Одна треть, Вам верно посчитали. . Вероятность равна 2*С (2,2)*С (2,0)/C(2,4)=2*1*1/6=1/3 - это используя комбинаторику. Но можно посчитать и исходя из классического определения вероятности. Каким можно вынуть два шара одного цвета? Либо кк, либо сс. Вероятность вынуть первый красный 2/4=1/2 (красных два шара из четырех) , вероятность вынуть второй красный 1/3 (один красный из оставшихся трех) , вероятность вынуть два красных равна произведению вероятностей этих событий (потому что эти события должны произойти одновременно - вероятность совпадения событий равна произведению вероятностей каждого отдельного события! ) 1/2*1/3=1/6. Вероятность вынуть ДВА СИНИХ точно такая же 1/6 (рассуждения те же, только вместо красных - синие) . А вероятность вынуть два шара одного цвета, то есть либо 2 красных, либо 2 синих, равна сумме вероятностей этих событий (поскольку нам достаточно, чтобы произошло ОДНО из ЭТИХ несовместных, то есть не могущих произойти одновременно, событий!) , то есть 1/6+1/6=2/6=1/3. ответ от решения, естественно, не изменяется. Потому что оба решения - ПРАВИЛЬНЫЕ!
Пусть т первый корень уравнения, тогда 2т второй корень уравнения. Подставив значения корней в уравнение ( т и 2т ) получаем систему 2х уравнений с неизвестными т и к. Решив ее, найдем значения первого корня и кожффициента к.
2т^2-кт+4=0 8т^2-2кт+4=0
-4т^2+2кт-8=0 8т^2-2кт+4=0
4т^2-4=0 2т^2-кт+4=0
т=1 или т= -1
Если т=1 то к=6, если т= -1 то к= -6.
Таким образом получили 2 случая:
1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2
2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2
Все эти уравнения - уравнения окружности с центром в начале координат.
У первой окружности радиус равен √9 = 3,
у второй √6≈2,4,
у третьей √6,2≈2,5.