Координаты точки пересечения прямых (5; 2)
Решение системы уравнений (5; 2)
Объяснение:
Решить графически систему уравнений:
x-y=3
3x-y=13
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
x-y=3 3x-y=13
-у=3-х -у=13-3х
у=х-3 у=3х-13
Таблицы:
х -1 0 1 х -1 0 1
у -4 -3 -2 у -16 -13 -10
Согласно графика, координаты точки пересечения прямых (5; 2)
Решение системы уравнений (5; 2)
Координаты точки пересечения прямых (5; 2)
Решение системы уравнений (5; 2)
Объяснение:
Решить графически систему уравнений:
x-y=3
3x-y=13
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
x-y=3 3x-y=13
-у=3-х -у=13-3х
у=х-3 у=3х-13
Таблицы:
х -1 0 1 х -1 0 1
у -4 -3 -2 у -16 -13 -10
Согласно графика, координаты точки пересечения прямых (5; 2)
Решение системы уравнений (5; 2)
подставляем координаты точек и получаем систему уравнений: { -1^2+p+q=2, -3^2+3p+q= -2; {p+q=3, 3p+q=7. p=3-q. подставляем во 2 уравнение системы: 3*(3-q)+q=7; 9-3q+q=7; -3q+q=7-9; -2q= -2; q=(-2)/(-2)=1. p=3-1=2. ответ: p=2, q=1.