Представим данное выражение в виде . Так как среди любых трех последовательных целых чисел по крайней мере одно делится на 2 и одно на 3, то при любых целых n число делится на Следовательно, число делится на 6, если n - любое число.
Докажем, что делится на 7, если n - натуральное число. Для начала исследуем методом математической индукции 1. При имеем - кратное 7. 2. Допустим, что делится на 7 при каком-нибудь произвольном натуральном , т.е. кратно 7. 3. Докажем, что делится на 7 и при
Первое слагаемое кратно 7 по допущению второго пункта, а второе слагаемое кратно 7, так как на 7 делятся все его слагаемые, следовательно, картно 7, если n - натуральное число.
Пусть v1 км/ч- скорость первого автомобиля, v2 км/ч - второго, t - время от старта автомобилей до их встречи. Тогда первый автомобиль находился в пути время t1=t+1,6 ч, а второй - время t2=t+2,5 ч, поэтому v1*(t+1,6)=v2*(t+2,5)=180. Кроме того, v1*t+v2*t=180. Получаем систему уравнений:
v1*(t+1,6)=180 v2*(t+2,5)=180 v1*t+v2*t=180
Из первого уравнения находим v1=180/(t+1,6), из второго - v2=180/(t+2,5). Подставляя эти выражения в третье уравнение, получаем уравнение:
180*t/(t+1,6)+180*t/(t+2,5)=180, или t/(t+1,6)+t/(t+2,5)=1.Отсюда следует уравнение t*(t+2,5)+t*(t+1,6)=t²+4,1*t+4, или 2*t²=t²+4. Тогда t²=4 и t=√4=2 ч. Отсюда v1=180/(2+1,6)=50 км/ч и v2=180/(2+2,5)=40 км/ч. ответ: 50 и 40 км/ч.
2*sin(пи/8)*cos(пи/8)=sin2*(пи/8)=sin(пи/4)=корень из 2/2. используем формулу: sin2a=2sinacosa.