Сначала разберём таблицу. В первой строке - значения выборки, вторая строка - показывает сколько раз каждое значение встречается в выборке. Таким образом полная выборка будет такой: 2; 5; 5; 5; 7; 7; 8; 8; 8; 8. Количество значений в выборке будет равно 10 (это обозначается так n = 10).
1) Среднее арифметическое = (2 · 1 + 5 · 3 + 7 · 2 + 8 · 4) / 10 = 6,3
2) Дисперсия обозначается S² и вычисляется по формуле: сумму разностей квадратов значения выборки и её среднего арифметического поделить на (n-1). Получаем
S² = ( (2 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (7 - 6,3)² + (7 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² ) / 10 - 1 = 4,01
3) Среднее квадратическое отклонение обозначается буквой ω:
ω = √S² = √4,01 = 2,002
4) Мода - это значение встречающееся в выборке чаще других, то есть
мода = 8
Если выборка содержит нечетное количество элементов, медиана равна (n+1)/2-му элементу.
Если выборка содержит четное количество элементов (как в нашем случае), медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам. То есть
медиана = (7 + 7) / 2 = 7
за 88 дней
Объяснение:
Егору задали решать в день x задач. Из условия получаем, что
(x+6)*44=(x+2)*66
44x+264=66x+132
264-132=66x-44x
132=22x
6=x
В день ему задали решать 6 задач
Если он будет решать на 6 больше (то есть по 12) то он справится за 44 дня, и решит всего 12*44=528 задач
Если он будет решать в день на 2 больше (то есть по 8) то он справится за 66 дней и решит те же самые 8*66=528 задач
Если же он будет следовать полученным указаниям и решать как сказали по 6 в день, то он справится за 528/6=88 дней
90 = 2 * (3*3) * 5
50 = 2 * (5*5)
НОК (90 и 50) = 2 * (3*3) * (5*5) = 450 - наименьшее общее кратное
1) 1300 - 450 = 850 (руб.) - потрачено на коробки по 50 руб;
2) 850 : 50 = 17 (шт.) - коробки с карандашами по 50 руб;
3) 450 : 90 = 5 (шт.) - коробки с карандашами по 90 руб.
ответ: 17 коробок по 50 руб. и 5 коробок по 90 руб.
Р.S. 1300 : 50 = 26 (шт.) - коробки с карандашами по 50 руб. - наибольшее число коробок.