М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ArtFox12
ArtFox12
31.07.2022 18:37 •  Алгебра

Правильно я сделал ? является ли тождественно равными выражения 8(а-b+с) и 8a-8b+8c решение--8*a 8*b 8*c= 8a-8b+8c: (торжденство верно)

👇
Ответ:
dniill
dniill
31.07.2022

так правильно зробила

4,6(6 оценок)
Ответ:
londonparisch
londonparisch
31.07.2022
Решено верно.
8(a-b+c) = 8a-8b+8c
8a-8b+8c = 8a-8b+8c
0=0
Тождество верно
4,6(60 оценок)
Открыть все ответы
Ответ:
tsaturyansyuza
tsaturyansyuza
31.07.2022

1.1.D(y)=[-5;4]

2.Е(у)=[-1;3]

3.Нули функции х=-3; х=3.5

4. Промежутки знакопостоянства. у>0 при х∈[-5;-3)∪(-3;3.5)

y<0 при х∈(3.5;  4]

5. Функция возрастает при х∈[-3;1] и убывает при х∈[-5;-3];[1;4]

6. Наибольшее значение у=3; наименьшее у=-1

7.Ни четная, ни нечетная.

8 Не периодическая.

2. f(10)=100-80=20

f(-2)=4+16=20

f(0)=0

5. 1.D(y)=(-∞;+∞)

2.Е(у)=(-∞;-1]

3.Нули функции нет

4. Промежутки знакопостоянства. у>0 ни при каких х, а при х∈(-∞;+∞)

y<0

5. Функция возрастает при х∈(-∞;-3] и убывает при х∈[-3;+∞)

6. Наибольшее значение у=-1; наименьшего нет

7.Ни четная, ни нечетная.

8 Не периодическая.

4,6(21 оценок)
Ответ:
aptemacko
aptemacko
31.07.2022
Дана функция  f(x) = x³  - 3x²  + 12.
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x³ - 3 x² + 12 = 0.
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение даёт 2 комплексных и один действительный корень:
x_1=- \frac{1}{3} \sqrt[3]{54 \sqrt{6}+135 }- \frac{3}{ \sqrt[3]{54 \sqrt{6} +135} } +1.
Численное решение
x_{1} = -1,6128878.

График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^3 - 3*x^2 + 12.
0^{3} - 0 + 12.
Результат:
f(0) = 12.
Точка:
(0, 12).

Для того, чтобы найти экстремумы, нужно решить уравнение
{d}{dx} f(x) = 0. (производная равна нулю),  и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
3x² - 6x = 0 или 3х(х - 2) = 0.
Решаем это уравнение.
Корни этого уравнения:
x_{1} = 0.
x_{2} = 2.
Значит,  экстремумы в точках:
(0, 12)
(2, 8)

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x_{2} = 2.
Максимумы функции в точках:
x_{2} = 0.
Убывает на промежутках (-oo, 0] U [2, oo).
Возрастает на промежутках [0, 2].

Найдем точки перегибов, для этого надо решить уравнение
{d^{2}}{d x^{2}} f(x ) = 0, (вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции: {d^{2}}{d x^{2}} f(x) = 6х - 6.
Вторая производная 6(х - 1) = 0.
Решаем это уравнение.
Корни этого уравнения x_{1} = 1.

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
вогнутая на промежутках [1, oo),
выпуклая на промежутках (-oo, 1].

Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo
\lim_{x \to -\infty}\left(x^{3} - 3 x^{2} + 12\right) = -∞.
Значит, горизонтальной асимптоты слева не существует.
\lim_{x \to \infty}\left(x^{3} - 3 x^{2} + 12\right) = ∞.
Значит, горизонтальной асимптоты справа не существует.

Наклонную асимптоту можно найти, подсчитав предел функции x^3 - 3*x^2 + 12, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x^{3} - 3 x^{2} + 12\right)\right) = ∞.
Значит, наклонной асимптоты слева не существует.
\lim_{x \to \infty}\left(\frac{1}{x} \left(x^{3} - 3 x^{2} + 12\right)\right) = ∞.
Значит, наклонной асимптоты справа не существует.

Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
\^{3} - 3 x^{2} + 12 = - x^{3} - 3 x^{2} + 12
- Нет.
x^{3} - 3 x^{2} + 12 = - -1 x^{3} - - 3 x^{2} - 12
- Нет.
значит, функция не является ни чётной, ни нечётной.

График дан в приложении.
4,8(77 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ