ответ: 2^97
Объяснение:
Найдем наибольшую степень двойки что меньше чем 100.
Очевидно что это 2^6=64 (2^7=128>100)
Понятно ,что число содержащее 6 двоек единственно n1=1 .
Теперь разберемся как посчитать число чисел которые кратны только на 2^5 ( не больше чем на эту степень двоек)
Все числа кратные на 2^5 можно записать так:
2^5 ,2^5*2 ;2^5*3 ;2^5*42^5*n . Соответственно из всех n нас интересуют только нечетные , при этих n число будет кратно ровно на 2^5.
Найдем максимальное n, что 32*n<100
Очевидно что nmax=3 (3*32=96) (число нечетных чисел тут равно n2=2)
Для справки сразу скажем ,что число нечетных чисел на интервале от 1 до k равно k/2- если k-четное и (k+1)/2 ,если k-нечетное.
По аналогии посчитаем число таких чисел для 2^4=16
nmax=6 (6*16=96) (число нечетных чисел n3=6/2=3)
Для 2^3=8 :
nmax=12 (8*12=96) (n4=12/2=6)
Для 2^2=4 :
nmax=25 (4*25=100) ( n5=(25+1)/2=13)
Для 2^1=2
nmax=50 (2*50=100) (n6=50/2=25)
Осталось посчитать общее количество двоек:
N=6n1+5n2+4n3+3n4+2n5+n6=6+10+12+18+26+25=97
Значит 100! делится на 2^97.
1)c3h6+hoh(н+) =c3h7oh-получение
2c3h7oh+2na=2c3h7ona+h2
ch3-ch2-ch2oh+cuo(t) =ch3-ch2-coh+cu+h2o
2)сh3-ch2-ch2-ch2oh + cuo(t) =ch3-ch2-ch2-coh +cu+h2o-получение
ch3-ch2-ch2-coh+h2=ch3-ch2-ch2-ch2oh
ch3-ch2-ch2-coh+ag2o(t) = ch3-ch2-ch2-cooh+2ag
3)2ch3-(ch2)3-cooh+2na=2ch3-(ch2)3-coona+h2
2ch3-(ch2)3-cooh+mgo=(ch3-ch2-ch2-ch2-coo)2mg+h2o
ch3-(ch2)3-cooh+naoh=ch3-(ch2)3-coona+h2o
2ch3-(ch2)3-cooh+na2co3=2ch3-(ch2)3-coona+co2+h2o
4)c2h5oh+ch3-cooh= c2h5-o-co-ch3+h2o
c5h11oh+h-cooh= c5h11-o-co-h +h2o
c7h13oh+c2h5-cooh= c7h13-o-co-c2h5+h2o
c5h11oh+ c5h11-cooh=c5h11-o-co-c5h11+ h2o