вероятность.
2. 10!
3. 26%
4. 1) 5/8 (от 6 до 9)
2) 1/36 (на грани первого — шесть, второго — пять)
3) 35/36 (хотя бы на одной грани не 6)
5. Нету количества троечников, поэтому задача нерешаема.
Объяснение:
1) После того, как нашли количество выбрать три согласных и количество выбрать одну гласную, умножаем первое на второе.
Чтобы найти вероятность составления слова "тест", сначала найдём количество комбинаций 6-и элементов по три и 5-ти элементов по 1. Далее находим вероятность найти определённую комбинацию 6-ти элементов по три и 5-ти по 1. Умножаем числа, что получили.
3) От "больше восьми" вычисляем "больше десяти" и получаем то, что искали.
4) 1) Рисуем квадрат с 36-ю квадратиками-исходами, внутри которых пишем количество очков на кубиках. Находим количество благоприятных исходов.
2) Правило умножения: P(A,B)=P(A)×P(B)=1/6*1/6=1/36
3) Условие будет не выполняться только тогда, когда на обоих кубиках будет 6. Вероятность этого — 1/36. Значит, вероятность выполнения условия — 1-1/36=35/36.
тогда его средняя скорость составляла 325/t км/ч.
40 мин = 2/3 ч
По новому расписанию время автобуса составляет (t- 2/3) ч,
а средняя скорость равна 325/(t- 2/3) км/ч.
По условию задачи, скорость движения по новому расписанию
на 10 км/ч больше скорости автобуса по старому расписанию.
Составим уравнение:
325/(t- 2/3) - 325/t =10
325/((3t-2)/3) -325/t =10
975/(3t-2) - 325/t = 10 |*t(3t-2)
975t - 975t + 650 = 10t(3t-2)
30t²-20t-650=0
3t²-2t-65=0
D=(-2)²-4*3*(-65)=784=28²
t₁=(2+28)/6=5
t₂=(2-28)/6=-4.1/3<0 (лишний корень)
t=5 ч - время автобуса по старому расписанию
325/5= 65 км/ч - скорость автобуса согласно старому расписанию
65+10=75 км/ч - скорость автобуса согласно новому расписанию
ответ: 75 км/ч