М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Даниссиммо1
Даниссиммо1
31.07.2020 14:11 •  Алгебра

1) принадлежат ли точки а (-10; 20), в (4; 16) и с (12; 144) графику функции у= х² 2) найдите точку пересечения графиков функций у= - х² и у = - 2х графически и по алгоритму. напишите на !

👇
Ответ:
polo73oye61z
polo73oye61z
31.07.2020

Решение посмотри на фото


1) принадлежат ли точки а (-10; 20), в (4; 16) и с (12; 144) графику функции у= х² 2) найдите точку
4,4(82 оценок)
Открыть все ответы
Ответ:
Topxic
Topxic
31.07.2020

1. Количество трехзначных чисел, составленных из трех различных цифр из множества цифр 1, 2, 3, 4, 5, 6 и 7, равно количеству размещений без повторения 7 элементов по 3 позициям:

     A(7, 3) = 7!/(7 - 3)! = 7!/4! = 7 * 6 * 5 = 210.

  2. В общей формуле A(n, m) = n!/(n - m)!, отношение факториалов называется убывающим факториалом. В частном случае, при n = m получим число перестановок n элементов:

     A(n, n) = n!/(n - n)! = n!/0! = n!

  3. Аналогичный результат получим для размещений n элементов по (n - 1) позициям:

     A(n, n - 1) = n!/(n - n + 1)! = n!/1! = n!

  ответ. Количество трехзначных чисел: 210

Объяснение:

4,7(73 оценок)
Ответ:
kirushaaa
kirushaaa
31.07.2020
Ть опервый использование свойств арифметической прогрессии)
Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии

a_1=-111;d=1;S_n=339
S_n=\frac{2a_1+(n-1)*d}{2}*n
x=a_n=a_1+(n-1)*d
339=(2*(-111)+(n-1)*1)n:2
339*2=(n-222-1)n
n^2-223n-678=0
D=(-223)^2-4*1*(-678)=52441=229^2
n_1=\frac{223-229}{2*1}
- не подходит, количество членов прогрессии не может быть отрицательным
n_2=\frac{223+229}{2*1}=226
n=226
x=-111+(226-1)*1=114
ответ: 114

второй на смекалку)
(так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)

далее -111+(-110)+.+0+1+2+...+110+111+112+...+х=
(-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х=
0+0+0+....+0+0+112+113+114+..+х
=112+113+..+х
т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0,
и фактически наша сумма равна 112+113+...+х (*)
так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы
, найдем его очень быстро
112=112
112+113=225 - меньше
112+113+114=339 -- совпало
значит искомое число х равно 114
ответ: 114
4,4(97 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ