Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 18.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=18
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=18
2n+1+2n+5=18
4n=12
n=3
3; 4 и 5;16
(6²-5²)+(4²-3²)=11+7
11+7=18 - верно
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 18.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=18
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=18
2n+1+2n+5=18
4n=12
n=3
3; 4 и 5;6
(6²-5²)+(4²-3²)=11+7
11+7=18 - верно
№1: Нужно домножить на 1-√5
-(5-а)(1-√5)/4
№2: Нужно домножить на 2+√а
(7+√а)(2+√а)/4-а
№3: Нужно домножить на √5с+1
(5с-1)(√5с+1)/5с-1=√5с+1
№4: Нужно домножить на √3 - 3х
(х-6)(√3 - 3х)/3+-9х^2