они смогут собрать на 45 минуте
Объяснение:
Суть в том, чтобы свести один из множителей к нулю. Потому что если умножить все на ноль, уравнение будет равно нулю.
1) х (х – 2) = 0;
При х=0, 0*(0-2)= 0*(-2)= 0
или при x=2, 2*(2 – 2) = 2*(0) =0;
2) 2x(1 - x)=0;
При х=0, 2*0(1 - 0)=0
или при х=1, 2(1 - 1)=2(0)=0;
3) х (х+3)(х – 4) = 0;
При х=0, 0*(3)(– 4) = 0;
при х=-3, -3 (-3+3)(-3 – 4) = -3 (0)(-3 – 4) = 0;
при х=4, 4 (4+3)(4 – 4) = 4 (4+3)(0) =0;
4) (3 - x)(x + 2)(x - 1)=0.
При х=3, (3 - 3)(3 + 2)(3 - 1)=(0)(3 + 2)(3 - 1)=0.
При х=-2, (3 + 2)(-2 + 2)(-2 - 1)=(3 + 2)(0)(-2 - 1)=0.
При х=1, (3 - 1)(1 + 2)(1 - 1)=(3 - 1)(1 + 2)(0)=0.
|2x+4,4|-3=|2x+1,4|
нули модулей x = -2.2 x = -0.7
раскрытие модулей
|2x+4,4| |2x+1,4|
x < -2.2 -(2x + 4.4) -(2x + 1.4)
-2.2 <=x <= -0.7 (2x + 4.4) -(2x + 1.4)
x > -0.7 (2x + 4.4) (2x + 1.4)
1. x < -2.2
-(2x + 4.4) - 3 = -(2x + 1.4)
-2x - 4.4 - 3 = -2x - 1.4
-7,4 = -1.4
x ∈ ∅
2. -2.2 <=x < -0.7
(2x + 4.4) - 3 = -(2x + 1.4)
2x + 1.4 = -2x - 1.4
4x = -2.8
x = -0.7
3. x > -0.7
(2x + 4.4) - 3 = (2x + 1.4)
2x + 1.4 = 2x + 1.4
0 = 0
x > -0.7
ответ x ∈ [-0.7, +∞)