Даны вершины треугольника А(-1;2;1),В(3;0;-4),С(2;0;0).
Решение имеет 2 варианта (надо было оговорить в задании - какой нужен).
1) По теореме косинусов. Для этого находим длины сторон треугольника. Квадрат Сторона
AB = √((xB-xA)²+(yB-yA)²+(zB-zA)²) = 16 4 25 45 6,708203932
BC = √((xC-xB)²+(yC-yB)²+(zC-zB)²) = 1 0 16 17 4,123105626
AC = √((xC-xA)²+(yC-yA)²+(zC-zA)²) = 9 4 1 14 3,741657387.
cos A = (b² + c² - a²)/(2bc) = (14+45-17)/(2√14*√45) = 0,836660027.
cos B = (a² + c² - b²)/(2ac) = (17+45-14)/(2√17*√45) = 0,867721831,
cos C = (a² + b² - c²)/(2ab) = (17+14-45)/(2√17*√14) = -0,453742606.
Косинус угла С отрицательный, значит, этот угол тупой.
ответ: треугольник тупоугольный
2) По векторам.
AB = (3-(-1); 0-2; -4-1) = (4; -2; -5). Модуль равен √45.
BC = (2-3; 0-0; 0-(-4)) = (-1; 0; 4). Модуль равен √17.
AC = (2-(-1); 0-2; 0-1) = (3; -2; -1). Модуль равен √14.
Векторы ВА, СВ и СА имеют обратные знаки координат).
cos A = (4*3 + (-2)*(-2) + (-5)*(-1))/(√45*√14) = 21/√630 = 0,836660027.
cos B = (-4*(-1) + 2*0 + 5*4)/(√45*√17) = 24/√765 = 0,867721831.
cos C = (1*(-3) + 0*2 + (-4)*1)/(√17*√14) = -7/√238 = -0,453742606.
Вывод о виде треугольника сохраняется, как и в первом варианте.
.
.
Задача:
За 5 ручек и 3 карандаша заплатили 13,4 грн. Сколько стоят ручки и сколько карандаши, если 1 ручка на 1,4 грн. дороже 1 карандаша?
5 ручек стоят - 11 грн.
3 карандаша стоят - 2,4 грн.
Объяснение:
пусть 1 карандаш стоит / х / грн., тогда 1 ручка стоит / х+1,4 /. А так как всего купили 3 карандаша / 3х / и 5 ручек / (х+1,4)×5 /, и заплатили за все 13,4 грн., можем составить уравнение:
1) (х+1,4)×5+3х=13,4 /раскроем скобки/
5х+7+3х=13,4
5х+3х=13,4-7
8х=6,4
х=6,4÷8
х=0,8 (грн.) - стоит один карандаш
2) 0,8×3=2,4 (грн.) - стоя три карандаша
3) (0,8+1,4)×5=2,2×5=11 (грн.) - стоят пять ручек
проверка: 2,4+11=13,4 (грн.) - стоит вся покупка
ответ: 2,4 и 11 грн.
a/(25-4a²); на ноль делить нельзя
25-4a²≠0;
4a²≠25;
a≠5/2;
a≠-5/2;