1)сколькими различных трехзначных чисел с разными цифрами можно составить из цифр: 2,3,4,5,7,8,9? 2)сколько различных трехбуквенных слов можно составить из алфавита, в которым 20 различных букв?
(x+2)(x-1)(3x-7)≤0 Решаем неравенство методом интервалов. Находим нули функции у=(x+2)(x-1)(3x-7) (x+2)(x-1)(3x-7)=0 Произведение нескольких множителей равно нулю, когда хотя бы один из них равен нулю. х+2 = 0 или х - 1 = 0 или 3х - 7 = 0 х=-2 или х=1 или х=2 целых 1/3 Отмечаем точки на числовой прямой заполненным кружком (здесь это квадратные скобки) и расставляем знаки : - + - + при х = -10 получаем (-10+2)(-10-1)(-30-7) <0 _ + _ + [-2][1][2целых1/3] поэтому на интервале, содержащем точку (-10),знак минус, далее знаки чередуем. ответ: (−∞;−2]∪[1; 2 целых 1/3]
Пусть дана функция: . Найдем значение , при котором функция будет равна . Для этого приравняем саму функцию к :
. Итак, при данная функция перескает ось абсцисс (OX). Так как у функции угловой коэффициент отрицательный (число -13), следует заключение, что функция убывает на всей области определения. Так как это линейная функция, то область определения у неё, вся числовая прямая. Отсюда следует, что функия - убывающая!
Теперь найдем, когда функция положительна и когда отрицательна. Здесь все просто, необходимо рассмотреть значение функции, относительно координаты . Так как функция убывает, то отсюда получаем: при при .
1) 8*7*6 = 336
2) 20^3 = 8000