номер а
преобразуем выражение (в частности, вынося за скобки общий множитель):
один из множителей кратен 73, а значит, и число кратно 73.
номер б
тот же принцип.
один из множителей кратен 75 — значит число кратно 75.
номер в
также видим, что один из множителей кратен 84.
номер г
также видим, что один из множителей кратен 37.
ответ: (5π/6)+π+2πn; (7π/6)+2πm, n, m ∈z
объяснение:
pi/6+2pim не может быть , так как cos < 0 только в 2 и в 3 части.
одз:
{–5cosx ≥ 0
{cosx ≠ 0 ( область определения тангенса)
произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0, а другой при этом не теряет смысла
3tg2x–1=0 ⇒ tgx=–1/√3 или tgx=1/√3 ⇒
x=(–π/6)+πk, k ∈ z или х=(π/6)+πs, s ∈ z
с учетом одз
х=(–π/6)+π+2πn, n ∈ z (k=2n+1) или х=(π/6)+(π)+2πm, m ∈z (s=2m+1)
√–5cosx=0 не может, противоречит второму условию одз
Доказать неравенство: а⁴+b⁴ ≥ a³b+ab³
Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0
Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим:
Нам надо доказать ≥.
Значит, будем смотреть разность и она должна быть ≥ 0
а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) =
=(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒
⇒ а⁴+b⁴ ≥ a³b+ab³