М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gsgshhshsbababa
gsgshhshsbababa
26.06.2020 19:34 •  Алгебра

30б.решите системы неравенств: 1) 5x-3> 3x+1, 3x+2< -x+13 2) 2x-1> (2x+3)/2, (2x+5)/5> x-2 заранее .

👇
Ответ:
lianaderzkaya82
lianaderzkaya82
26.06.2020
Решение задания смотри на фотографии
30б.решите системы неравенств: 1) 5x-3> 3x+1, 3x+2< -x+13 2) 2x-1> (2x+3)/2, (2x+5)/5> x
4,6(7 оценок)
Открыть все ответы
Ответ:
aazzziizz
aazzziizz
26.06.2020
5 arccos 1\2 + 3 arcsin (-корень из 2\2)
Оба значения табличные для   cos   и   sin
5 arccos \frac{1}{2} + 3 arcsin (- \frac{ \sqrt{2} }{2}) = \\ 5 * \frac{ \pi }{3} +3*(- \frac{ \pi }{4} ) = \\ \frac{5 \pi }{3} - \frac{3 \pi }{4} = \frac{11 \pi }{12}


sin ( 4 arccos ( - 1\2) - 2 arcctg корень из 3\3)
Оба значения табличные для   cos   и   ctg
sin [ 4 arccos ( - \frac{1}{2}) - 2 arcctg \frac{ \sqrt{3} }{3} ] = \\ sin [4* \frac{2 \pi }{3} - 2* \frac{ \pi }{3} ] = \\ sin[ \frac{8 \pi }{3} - \frac{2 \pi }{3} ] = sin(2 \pi ) = 0


6 sin^2x + 5cosx-7=0
Сначала использовать основное тригонометрическое тождество
6 sin^2x + 5cosx-7=0 \\ 6 sin^2x + 5cosx-6 - 1 =0 \\ 6 sin^2x + 5cosx-6( sin^{2}x + cos^{2}x) - 1 =0 \\ 6 sin^2x + 5cosx-6 sin^{2}x - 6cos^{2}x - 1 =0 \\ 5cosx - 6cos^{2}x - 1 =0
Это обыкновенное квадратное уравнение, в котором переменной является      cos x
- 6cos^{2}x +5cosx - 1 =0 \\ D = 25 - 4*(-6)*(-1) = 25 - 24 = 1 \\ cos x_{1} = \frac{-5-1}{-12} = \frac{1}{2} \\ cos x_{2} = \frac{-5+1}{-12} = \frac{1}{3} \\ x_{1} = \frac{+}{} \frac{ \pi }{3} + 2 \pi n \\ x_{2} = \frac{+}{} arccos \frac{1}{3} +2 \pi m,   n,m∈Z


2sin^2x + sinx cosx - 3 cos^2x=0
Проверить, что cos^{2} x не является корнем ( на ноль делить нельзя), а потом все уравнение почленно разделить на  cos^{2} x
cos^{2} x = 0
x = \frac{ \pi }{2} + \pi n \\ 2sin^2x + sinx cosx - 3 cos^2x=0 \\ 2sin^2 \frac{ \pi }{2} + sin \frac{ \pi }{2} cos \frac{ \pi }{2} - 3 cos^2 \frac{ \pi }{2}=0 \\ 1+0-0 \neq 0
Не корень, можно делить
2sin^2x + sinx cosx - 3 cos^2x=0 \\ \frac{2 sin^{2}x }{ cos^{2} x} + \frac{sinx cosx}{cos^{2} x} - \frac{3cos^{2} x}{cos^{2} x} =0 \\ 2 tg^{2}x +tgx-3 = 0
Обыкновенное квадратное уравнение с переменной   tg x
2 tg^{2}x +tgx-3 = 0 \\ D = 1 - 4*2*(-3) = 25 \\ tg x_{1} = \frac{-1-5}{4} = -\frac{3}{2} \\ tg x_{2} = \frac{-1+5}{4} = 1 \\ x_{1} =arctg( -\frac{3}{2} ) + \pi n \\ x_{2} =\frac{ \pi }{4} + \pi m
n,m ∈ Z
4,8(38 оценок)
Ответ:
Викуша0402
Викуша0402
26.06.2020

найдем одз. под корнем может находиться только неотрицательное значение, значит 5-х> =0, откуда х< =5. корень может принимать только неотрицательные значения, значит 5-х^2> =0, откуда х^2< =5, откуда |х|< =√5, откуда -√5< =х< =√5.

теперь решение:

вoзведем в квадрат:

(5-x^2)^2=5-x

25-10x^2+x^4=5-x

x^4-10x^2+x+20=0

(x^2-x-4)(x^2+x-5)=0

1) x^2-x-4=0

d=17

x(1)=(1+√17)/2> (1+√16)/2=(1+4)/2=5/2=√5*√5/2> √5*√4/2=√5. значит этот корень не подходит.

x(2)=(1-√17)/2 подставляя в изначальное уравнение, проверяем, что этот корень подходит.

2) x^2+x-5=0

d=21

x(1)=(-1+√21)/2 подставляя в изначальное уравнение, проверяем, что этот корень подходит.

x(2)=(-1-√21)/2< (-1-√16)/2=-5/2=-√5*√5/2< -√5*√4/2=-√5. значит этот корень не подходит.

ответ: х(1)=(1-√17)/2, х(2)=(-1+√21)/2.

4,7(8 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ