1. xn=2n-1;
n=1; x1=2*1-1=2-1=1;
n=2; x2=2*2-1=4-1=3;
n=3; x3=2*3-1=6-1=5;
n=4; x4=2*4-1=8-1=7;
n=5; x5=2*5-1=10-1=9.
***
2. xn=n²+1;
n=1; x1=1²+1=2;
n=2; x2=2²+1=5;
n=3; x3=3²+1=10;
n=4; x4=4²+1=17;
n=5; x5=5²+1=26.
***
3. xn=1/(n+1);
n=1; x1=1/(1+1)=1/2;
n=2; x2=1/(2+1)=1/3;
n=3; x3=1/(3+1)=1/4;
n=4; x4=1/(4+1)=1/5;
n=5; x5=1/(5+1)=1/6.
***
4. xn=(-1)^n;
n=1; x1=(-1)^1=-1;
n=2; x2=(-1)^2=1;
n=3; x3=(-1)^3=-1;
n=4; x4=(-1)^4=1;
n=5; x5=(-1)^5=-1.
Объяснение:
1. xn=2n-1;
n=1; x1=2*1-1=2-1=1;
n=2; x2=2*2-1=4-1=3;
n=3; x3=2*3-1=6-1=5;
n=4; x4=2*4-1=8-1=7;
n=5; x5=2*5-1=10-1=9.
***
2. xn=n²+1;
n=1; x1=1²+1=2;
n=2; x2=2²+1=5;
n=3; x3=3²+1=10;
n=4; x4=4²+1=17;
n=5; x5=5²+1=26.
***
3. xn=1/(n+1);
n=1; x1=1/(1+1)=1/2;
n=2; x2=1/(2+1)=1/3;
n=3; x3=1/(3+1)=1/4;
n=4; x4=1/(4+1)=1/5;
n=5; x5=1/(5+1)=1/6.
***
4. xn=(-1)^n;
n=1; x1=(-1)^1=-1;
n=2; x2=(-1)^2=1;
n=3; x3=(-1)^3=-1;
n=4; x4=(-1)^4=1;
n=5; x5=(-1)^5=-1.
y=x²-4x+3
y=ax²+bx+c
a=1, b=-4, c=3
1) Координаты вершины параболы:
х(в)= -b/2a = -(-4)/(2*1)=4/2=2
у(в) = 2²-4*2+3=4-8+3=-1
V(2; -1) - вершина параболы
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
Объяснение:
сделай лучше ответ