11 в любой степени кончается на 1. 19 в нечетной степени кончается на 9.
Их сумма кончается на 1+9=10, то есть на 0, а значит, делится на 5.
Осталось доказать, что это число делится на 3.
11=3*3+2; 11^2019 = (3*3+2)^2019 = 2^2019.
Здесь и дальше знак = означает "такой же остаток при делении на 3".
2^2019 = (2^3)^673 = 8^673 = 2^673 = 2^3*2^670 = 8*(2^10)^67 = 2*1024^67 =
= 2*(3*341+1)^67 = 2*1^67 = 2
Таким образом, 11^2019 имеет при делении на 3 остаток 2.
19 = 3*6+1; 19^2019 = (3*6+1)^2019 = 1^2019 = 1.
Таким образом, 19^2019 имеет при делении на 3 остаток 1.
Сумма этих чисел имеет остаток 2+1=3, то есть делится нацело.
Что и требовалось доказать.
Участник Знаний
1.~ a)~ (x+4)^2=x^2+8x+16\\ b)~ (y-5x)^2=y^2-10xy+25y^2\\ c)~ (3a-2)(3a+2)=(3a)^2-2^2=9a^2-4\\ d)~ (c-2b)(c+2b)=c^2-(2b)^2=c^2-4b^2
2. Разложить на множители:
a)~ x^2-81=x^2-9^2=(x-9)(x+9)\\ b)~ y^2-4y+4=(y-2)^2
в пункте б) опечатка, так что предположил как должно быть
c)~ 36x^4y^2-169c^2=(6x^2y)^2-(13c)^2=(6x^2y-13c)(6x^2y+13c)\\ d)~ (x+1)^2-(x-1)^2=(x+1-x+1)(x+1+x-1)=2\cdot 2x=4x
3. Упростить выражение:
(c+6)^2-c(c+12)=c^2+12c+36-c^2-12c=36
4. Решите уравнение:
a)~ (x+7)^2-(x-4)(x+4)=65\\ x^2+14x+49-x^2+16=65\\ 14x=0\\ x=0
b)~ 49y^2-64=0\\ y^2=\dfrac{64}{49}~~\Rightarrow~~~ y_{1,2}=\pm\dfrac{8}{7}
5. Выполнить действия:
a)~ (4a^2+b^2)(2a-b)(2a+b)=(4a^2+b^2)(4a^2-b^2)=16a^4-b^4\\ b)~ (b^2c^3-2a^2)(b^2c^3+2a^2)=(b^2c^3)^2-(2a^2)^2=b^4c^6-4a^4
6*.Докажите неравенство:
4x^2+9y^2>12xy-0.1\\ 4x^2-12xy+9y^2>-0.1\\ (2x-3y)^2>-0.1
Что и требовалось доказать
Объяснение:
m≡-3(mod 6); n≡-4(mod 6)⇒3m-4n≡3·(-3)-4·(-4)=-9+16=7≡1(mod 6)
ответ: 1