Объяснение:
а) log₅ (x + 4) = log₅ 25
Область допустимых значений: (ОДЗ)
x + 4 > 0
x > - 4
"Опустим" логарифмы, так как у них одинаковые основания:
x + 4 = 25
x = 21
Это значение входит в ОДЗ, значит, мы получили ответ
б) log₂ (x + 2) = log₂ (x² + x - 7)
Здесь проще сразу опустить логарифмы, сделав в конце проверку для каждого корня:
x + 2 = x² + x - 7
2 = x² - 7
x² = 9
x = ±3
Для x = 3:
log₂ (3 + 2) = log₂ (9 + 3 - 7)
log₂5 = log₂5
Этот корень входит в решение.
Для x = -3
log₂ (-3 + 2) = log₂ (9 - 3 - 7)
log₂ (-1) = log₂ (-1)
Логарифма отрицательно числа не существует, значит, x = -3 не является корнем уравнения:
ответ: x = 3
в) log (1/3) (2x + 1) = -1
ОДЗ: 2x + 1 > 0
2x > - 1
x > -1/2
Вынесем степень -1 из одной третьей:
-log₃ (2x + 1) = -1
log₃ (2x + 1) = 1
Представим единицу как log₃3 и опустим логарифмы:
log₃ (2x + 1) = log₃3
2x + 1 = 3
2x = 2
x = 1
Этот корень входит в ОДЗ, значит, это наш ответ
В решении.
Объяснение:
Двое рабочих работая совместно могут выполнить работу за 12 дней. За сколько времени выполнит эту работу второй работник, если он за 3 дня выполняет такую часть работы,как первый за 4 дня.
Вся работа - 1;
х - производительность 1 работника (часть работы в день).
у - производительность 2 работника (часть работы в день).
По условию задачи система уравнений:
(х+у) * 12 = 1
4*х=3*у
1) Найти производительность труда 2 работника.
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х= 3у/4
(3у/4 + у) * 12=1
9у + 12у = 1
21у = 1
у = 1/21 - производительность труда 2 работника (такую часть работы он делает за 1 день).
2) Найти количество дней, за которое 2 работник один сделает всю данную работу.
1 : 1/21 = 21 (день) потребуется второму работнику, если он будет работать один.
я предпологаю что под а)y= 3.14
а под Б0 Y= 4.98