Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
525 см в квадрате
Объяснение:
Обозначим длину разреза буквой x.Поскольку Ваня разрезал лист ватмана на два прямоугольника , то стороны этих прямоугольников , противоположные линии разреза, тоже равны x. Теперь сложим периметры двух этих частей . Мы получим периметр целого листа ватмана плюс удвоенную длину разреза, то есть 80 + 90 = 100 + 2x. Откуда x = 35 см. Посмотрим на первый прямоугольник. Его периметр 80 см, а сумма двух противоположных сторон равна 2 * 35 = 70 см.Значит,две другие его стороны в сумме дают 80 - 70 = 10 см.То есть каждая из них равна 10 : 2 = 5 см. Площадь этого прямоугольника равна 35 * 5 = 175 см в квадрате.
Точно так же найдем другие стороны второго прямоугольника. Получится (90 - 70) : 2 = 10 см. Значит, его площадь равна 35 * 10 = 350 см в квадрате.
Чтобы найти площадь целого листа ватмана, нужно просто сложить площади двух его частей. То есть площадь целого листа равна 175 + 350 = 525 см в квадрате.
b-a = (-18-18; -19-(-3)) = {-36;-16}