Во втором букете роз на 50 больше, чем в первом. если в каждый букет добавить по 2 розы, то в первом букете станет в 2 раза меньше, чем во втором. сколько роз было в двух букетах вместе?
пусть х роз будет в 1 букету, то во втором - х+50.
После того, как в оба букета добавили по 2 розы, то в 1 стало - Х+2, а во втором - (х+50)+2. По условию задачи в первом букете стало в 2 раза меньше, поэтому составим уравнение.
Вопрос "как решать систему уравнений" не совсем уместен. Существует множество различных приёмов решения систем. Но на вопрос ответить можно. Есть два основных решения систем: 1)Подстановкой 2)Сложением В зависимости от ситуации используется первый или второй
В нашей системе выгоднее решать именно подстановкой. Смотрите, у нас же в первом уравнении уже выражен y. А во втором уравнении фигурирует тот же самый y. Мы же знаем, чему он равен, из первого уравнения. Так что подставим во второе уравнение вместо y x + 1.
Получили обыкновенное уравнение с одной переменной, которое и решаем. Обычное квадратное уравнение. Решаем его(можно через дискриминант, а можно по теореме Виета) Мы получили иксы. Но это ещё не всё. Ведь решить систему уравнений - значит найти не только иксы, но и соответствующие им игреки. Так что для каждого икса найдём ему пару - соответствующий y. А откуда найдём? Из первого уравнения(теперь икс у нас есть, можем найти y)
1)x = 3, тогда y = x + 1 = 3 + 1 = 4 2)x = -2, тогда y = x + 1 = -2 + 1 = -1 Для КАЖДОГО x мы нашил свой y, поэтому можем говорить о том, что система решена. Записываем ответ. В ответе пишем все найденные пары, сначала x, потом y. ответ: (3, 4); (-2, -1)
Вопрос "как решать систему уравнений" не совсем уместен. Существует множество различных приёмов решения систем. Но на вопрос ответить можно. Есть два основных решения систем: 1)Подстановкой 2)Сложением В зависимости от ситуации используется первый или второй
В нашей системе выгоднее решать именно подстановкой. Смотрите, у нас же в первом уравнении уже выражен y. А во втором уравнении фигурирует тот же самый y. Мы же знаем, чему он равен, из первого уравнения. Так что подставим во второе уравнение вместо y x + 1.
Получили обыкновенное уравнение с одной переменной, которое и решаем. Обычное квадратное уравнение. Решаем его(можно через дискриминант, а можно по теореме Виета) Мы получили иксы. Но это ещё не всё. Ведь решить систему уравнений - значит найти не только иксы, но и соответствующие им игреки. Так что для каждого икса найдём ему пару - соответствующий y. А откуда найдём? Из первого уравнения(теперь икс у нас есть, можем найти y)
1)x = 3, тогда y = x + 1 = 3 + 1 = 4 2)x = -2, тогда y = x + 1 = -2 + 1 = -1 Для КАЖДОГО x мы нашил свой y, поэтому можем говорить о том, что система решена. Записываем ответ. В ответе пишем все найденные пары, сначала x, потом y. ответ: (3, 4); (-2, -1)
пусть х роз будет в 1 букету, то во втором - х+50.
После того, как в оба букета добавили по 2 розы, то в 1 стало - Х+2, а во втором - (х+50)+2. По условию задачи в первом букете стало в 2 раза меньше, поэтому составим уравнение.
2(х+2)=(х+50)+2
2х+4=х+50+2
2х-х=50+2-4
х=48
48-роз было в 1 букете
2) 48+50 = 98(роз) - было во 2 букете
3) 48+98 = 146 ( роз) - было в двух букетах
ответ: 146 роз
можешь сделать проверку