М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Карина111111111444
Карина111111111444
06.01.2023 06:01 •  Алгебра

Найдите решение уравнения 2sin^2x-5cosx-5=0, заранее )

👇
Ответ:
Allery
Allery
06.01.2023
2-2cos^2x-5cosx-5=0
-2cos^2x-5cosx-3=0 / :-1
2cos^2x+5cosx+3=0
cosx=a
2a^2+5a+3=0
D=5^2-4*2*3=1
x1,2=(-5+-1):4
x1=-1.5
нет ответа

x2=-1
cosx=-1
x=p+2pn
4,5(1 оценок)
Открыть все ответы
Ответ:
LadyK15
LadyK15
06.01.2023
1)   Находим первую производную функции:
y' = 2x+1
Приравниваем ее к нулю:
2x+1 = 0
x1 = -1/2
Вычисляем значения функции 
f(-1/2) = 3/4
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2
Вычисляем:
y''(-1/2) = 2>0 - значит точка x = -1/2 точка минимума функции.

2)  Находим первую производную функции:
y' = e^x/x-e^x/x^2
или
y' = ((x-1)•e^x)/x^2
Приравниваем ее к нулю:
((x-1)•e^x)/x^2 = 0
x1 = 1
Вычисляем значения функции 
f(1) = e
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = e^x/x-2e^x/x^2+2e^x/x^3
или
y'' = ((x^2-2x+2)•e^x)/x^3
Вычисляем:
y''(1) = e>0 - значит точка x = 1 точка минимума функции.
4,4(56 оценок)
Ответ:
Nastyabro1111
Nastyabro1111
06.01.2023

Объяснение:Находим критические точки данной функции.

Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.

у' = (-х^2 + 6х + 7)' = -2x + 6.

-2x + 6 = 0;

2x = 6;

x = 6 / 2 = 3.

Следовательно, точка х = 3 является критической точкой данной функции.

Находим значение второй производной данной функции в точке х = 3.

у'' = (-2x + 6)' = -2.

Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.

Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).

ответ: данная функция убывает на промежутке (3; +∞).

4,6(4 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ