производная=-3^2+12x+15
приравниваем производную к нулю, находим критические точки
-3^2+12x+15=0
Д=144+180=18^2
x1=-12+18/-6=-1
x2=-12-18/-6=5
Разложим квадратный трехчлен(нашу производную) на линейные множители
-3(x+1)(x-5)
На числовой оси обозначим эти критические точки, которые разобьют ее на три интервала, в каждом из которых будем смотреть какие знаки принимает производная
-15
- + -
Если знак меняется с -на+, то имеем точку минимума, с + на - -максимума
ответ: Экстремумы Хmin=-1, Хmax=5.
1.Решите:
А) (а-5)(а-3) = a² - 3a - 5a + 15 = a² - 8a + 15
Б) (5х+4)(2х-1) = 10x² - 5x + 8x - 4 = 10x² + 3x - 4
В) (3р+2с)(2р+4с) = 6p² + 12pc + 4cp + 8c² = 6p² + 16pc + 8c²
Г) (b-2)(b²+2b-3) = b³ + 2b² - 3b - 2b² - 4b + 6 = b³ - 7b + 6
2. Рaзложите на множители:
А) х(х-у)+а(х-у) = (x-y)(x+a)
3. Упростите:
0,5х(4х⁴-1)(5х²+2) = (2x^5 - 0,5x)(5x² + 2) = 10x^7 + 4x^5 - 2,5x³ - x
4. Представьте многочлены в виде произведения:
А) 2а-ас-2с+с² = a(2 - c) - c(2 - c) = (a-c)(2-c)
B) bx+by-x-y-ax-ay = b(x + y) - (x + y) - a(x + y) = (x+y)(b-1-a)
√(2х-1)/(х-2)<1
одз подкоренное выражение больше равно 0
2x-1>=0 x>=0.5
заметим что левая часть отрицательна при x<2
значит одна часть решения есть [0.5, 2)
теперь решаем при x>2 левая и правая части положительны и мы можем возвести их в кавадрат, и это будет равносильно
(2x-1)/(x-2)² < 1²
(2x-1)/(x²-4x+4) - 1 < 0
( (2x-1) - (x²-4x+4)) / (x-2)² < 0 от знаменателя можно избавиться он всегда положителен и не равен 0 так как x>2
2x - 1 - x² + 4x - 4 < 0
-x² + 6x - 5 < 0
x² - 6x + 5 > 0
D=36-20=16 x12=(6+-4)/2 = 1 5
(x-1)(x-5)>0
применяем метод интервалов
(1) (5)
x∈(-∞ 1) U (5 +∞) вспоминаем что x>2 значит x∈(5 + ∞)
объединяем с первой частью решения и получаем
ответ x∈[0.5 2) U (5 +∞)