ответ: y = -6x - 11
Объяснение:
Касательная параллельна прямой y = -6x + 7. Коэффициент наклона этой прямой равен -6.
Так как касательная параллельна этой прямой, следовательно, коэффициент наклона касательной тоже равен -6.
То есть мы знаем коэффициент наклона касательной, а, тем самым, значение производной в точке касания.
Итак, у нас дана функция y = x² - 4x - 10 и значение производной в точке касания.
а) Найдем точку, в которой производная функции y = x² - 4x - 10 равна -6.
Сначала найдем уравнение производной.
y' = (x² - 4x - 10)' = 2x - 4
Приравняем производную к числу -6.
2x - 4 = -6
2x = -2
x = -1
б) Найдем уравнение касательной к графику функции y = x² - 4x - 10 в точке x₀ = -1.
Найдем значение функции в точке x₀ = -1.
y(-1) = (-1)² - 4·(-1) - 10 = 1 + 4 - 10 = -5
Подставим эти значения в уравнение касательной:
y - y(x₀) = y'(x₀)(x - x₀)
y - (-5) = -6(x - (-1))
y + 5 = -6(x + 1)
y = -6x - 6 - 5
y = -6x - 11
Объяснение:1.Действия над степенями с целыми показателями выполняются по тем же правилам, что и действия над степенями с натуральными показателями. ( ВЕРНО)
2.Свойства степени с натуральным показателем справедливы и для степени с любым целым показателем, если основание степени не равно нулю. . ( ВЕРНО)
3.Все свойства степени с натуральным показателем справедливы и для степени с любым целым показателем. . ( ВЕРНО)
4.Действия над степенями с целыми показателями не выполняются по тем правилам, по которым выполняются действия над степенями с натуральными показателями.. ( НЕВЕРНО)
a= 4; b=4t; c=9; k=0,5b=2t
D=k^2-ac=(2t)^2- 4*9=4*t^2-36.
Уравнение не будет иметь корней при D<0⇒
4*t^2-36<0
4*t^2<36
t^2<9 ⇒ при t ∈ [-3;3] уравнение не будет иметь корней