S = Vt, где S — расстояние, V — скорость, а t — время.
Итак, рассуждаем. Грузовой автомобиль проехал неизвестное расстояние за 8 часов, двигаясь со скоростью 60км/ч. Значит, чтобы найти расстояние, которое он проехал, необходимо время (8 часов) умножить на скорость (60км/ч). 8ч. × 60км/ч. = 480 километров — расстояние, которое проехал грузовой автомобиль.
Разбираемся с легковой машиной. S = Vt —> t = , где t — время, S — путь, а V — скорость. Расстояние мы вычислили, а скорость легковой машины дана в условии. t = = 4 часа — время, потраченное легковой машиной на путь.
Мы видим, что скорость легковой машины ровно в 2 раза больше скорости грузового автомобиля —> следовательно, легковая машина и проехала это расстояние в 2 раза быстрее, чем грузовой автомобиль. Исходя из выводов, найти время, потраченное легковой машиной на путь, очень просто: необходимо 8 часов разделить на 2, что равно 4 часа.
Дано уравнение: x=−7x+40x−10 Домножим обе части ур-ния на знаменатели: -10 + x получим: x(x−10)=1x−10(−7x+40)(x−10) x(x−10)=−7x+40 Перенесём правую часть уравнения в левую часть уравнения со знаком минус.
Уравнение превратится из x(x−10)=−7x+40 в x(x−10)+7x−40=0Раскроем выражение в уравнении x(x−10)+7x−40=0Получаем квадратное уравнение x2−3x−40=0 Это уравнение вида a*x^2 + b*x + c. Квадратное уравнение можно решить с дискриминанта. Корни квадратного уравнения: x1=D‾‾√−b2a x2=−D‾‾√−b2a где D = b^2 - 4*a*c - это дискриминант. Т.к. a=1 b=−3 c=−40 , то D = b^2 - 4 * a * c = (-3)^2 - 4 * (1) * (-40) = 169 Т.к. D > 0, то уравнение имеет два корня. x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) или x1=8 x2=−5
Заметим, что y = 0 не может быть решением системы, поэтому домножим первое уравнение на y²
x²y² = (xy)² = 4. Так как xy = -8, (-8)² = 64 ≠ 4. Равенство неверное, значит, решений системы нет.
ответ: ∅