1). В числителе стоит формула квадратов: (6а-1)^2; В знаменателе записываем: 6а^2+12а-а-2. Выносим общие множители: 6а(а+2) - (а+2). Дальше: (6а-1)*(а+2) (почему так? Потому что (а+2) - общая скобка, а 6а и -1 это общие множители этих скобок.); (6а-1) сократится, будет 6а-1/а+2; 6а - 1/а + 2. 2). -х^2 - 2х + 8 》0; D = 4 - 4*(-1)*8 = 4 + 32 = 36; x1 = 2; x2 = -4. Ветви параболы направлены вниз. Без чертежа неравенство не имеет смысла! Функция больше 0 => всё, что выше и есть решения неравенства. ответ: [-4;2] или -4《 х 《 2.
Графиком функции y=x^2-3x+2 является парабола, у которой ветви направлены вверх, найдём точку вершины этой параболы: X(вершины)=-b/2a=-(-3)/2=3/2=1,5 подставим это значение в уравнение, чтобы получить Y(вершины): Y(вершины)=(3/2)^2-3*3/2+2=-0,25 затем находим точки пересечения этой параболы с осью ОХ, для этого мы приравниваем данное уравнение к нулю: x^2-3x+2=0 и ищем его корни: x1=1; x2=2; используя полученные точки строим параболу. теперь строим прямую Y=x-1 по точкам: A(1;0); B(0;-1) далее найдём точки пересечения этих графиков , для этого приравняем уравнения этих графиков: x^2-3x+2=x-1 корни этого уравнения равны: x1=1; x2=3; координаты точек пересечения этих графиков равны: C(1;0) и D(3;2) фигура ограничена линиями x=1 и x=3 и уравнениями графиков функций, обозначим их y=f1(x) и y=f2(x), тогда площадь фигуры вычисляется по формуле: S= считаем интеграл: S= S=4/3
y=корень(x^2-3x+2)=корень((x-2)(x-1))
(x-2)(x-1)>=0
значит ответ (-бесконечность:1] и [2:+бесконечность)