а) Если чисел выписано 7, то их было задумано 3. Их не могло быть меньше (у двух чисел сумм выписывается всего 3), и не могло быть больше (у четырёх чисел сумм будет 15). Нуля в наборе нет, а есть положительные и отрицательные числа. Какое-то встречается один раз, а какое-то два. Если отрицательное число одно, то положительных два, но тогда из них формируются три положительные суммы. Значит, было два отрицательных числа и одно положительное число, равное 7. Из отрицательных чисел может быть сформировано -5, чтобы в сумме с 7 получалось 2. Сумма же отрицательных чисел равна -13. Значит, это числа -8 и -5. А весь набор задуманных чисел был такой: -8, -5, 7. Легко видеть, что этот вариант подходит.
б) Пример с пятью числами: -2,-1,0,1,2. Легко проверяется, что выписано будет 31 число, где ±3 появляется 2 раза, ±2 -- 4 раза, ±1 -- 6 раз, и 0 появится ровно 7 раз. Четырёх различных чисел недостаточно. Это легко проверяется, так как 0 сам по себе встречается не более одного раза, среди пар он встречается не более двух раз (пары с одинаковой суммой не пересекаются), среди троек не более одного раза (все их суммы различны), и как сумма всех чисел тоже не более одного раза -- итого получается меньше семи.
в) Нет, не всегда. Пусть задуманы числа 1, 2, -3. Из них формируется набор чисел от -3 до 3 (без повторений). Ясно, что если у всех задуманных чисел сменить знак, то получится то же самое, поэтому задуманы могли быть и числа -1, -2, 3.
(3m-1)(m+2)-(m+3)(2m-1) = 3m²+6m-m-2-2m²+m-6m+3= m²+1
m = 0.5
(0.5)² + 1 = 0.25 + 1 = 1.25
(x-2)(3x+1)+(3x-1)(x+2) = 3x²-6x+x-2+3x²+6x-x-2 = 6x²-4
x= -0.5
6*(-0.5)² - 4 = 6 * 0.25 - 4 = 1.5 - 4 = -2.5