Наша функция содержит знак модуля. Следовательно, необходимо рассмотреть две ситуации: 1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз, вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх. Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный. 2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх, вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.
y = x+1/x-2 f'0(x*) = 0 Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие: f'0(x*) = 0 f''0(x*) > 0 то точка x* является точкой глобального минимума функции. Если в точке x* выполняется условие: f'0(x*) = 0 f''0(x*) < 0 то точка x* - глобальный максимум. Решение. Находим первую производную функции: y' = 1-1/x2 или y' = (x2-1)/x2 Приравниваем ее к нулю: (x2-1)/x2 = 0 x1 = -1 x2 = 1 Вычисляем значения функции f(-1) = -4 f(1) = 0 ответ: fmin = -4, fmax = 0
Прямая пропорциональность имеет вид у=kx.
Прямая пропорциональность проходит через начало координат.
1) у=0*х совпадает с осью Ох, угловой коофициент =0. Имеет вид у=0.
2) у=-1х
Остальные два графика являются линейными функциями.