Объяснение:
1) Треугольники ABM и CBM
AB=BC (по условию)
BM - общая
∠M=90° (по условию)
Вывод: треугольники равны по катету и гипотенузе
2) Треугольники FDN и NKF
DN=FK (по условию)
FN - общая
∠D=∠K=90° (по условию)
Вывод: треугольники равны по катету и гипотенузе
3) Треугольники SDO и SPO
∠D=∠P=90° (по условию)
SO - общая
∠SOD=∠SOP (по условию)
Вывод: треугольники равны по гипотенузе и острому углу
4) Треугольники RMX и XNR
RX - общая
∠MXR=∠NRX (по условию)
∠M=∠N=90° (по условию)
Вывод: треугольники равны по гипотенузе и острому углу
Треугольники MRT и NXT:
RT=XT (тк ∠MXR=∠NRX (по условию), треугольник RTX - равнобедренный (по свойству))
∠M=∠N=90° (по условию)
Из доказательства пары этого пункта ∠MRX=∠NXR (соотв. элементы равных фигур равны), но ∠MXR=∠NRX (по условию)=> ∠MRT=∠NXT
Вывод: треугольники равны по гипотенузе и острому углу
ответ:Составим систему уравнений, приняв каждое из чисел, равным Х и У. При этом, если остаток от деления чисел равен 4-м, а неполное частное - 3-м, значит одно из чисел, уменьшенное на 4, будет делиться на второе число без остатка и будет равно 3-м. Среднее арифметическое двух чисел равно сумме этих чисел, деленных на 2:
(Х – 4) / У = 3;
(Х + У) / 2 = 18
Х + У = 2 * 18;
Х + У = 36;
Х = 36 – У;
(Х – 4) / У = 3;
(36 – У – 4) / У = 3;
(32 - У) / У = 3;
32 – У = 3 * У;
32 = 3 * У + У = 4 * У;
У = 32 / 4 = 8;
Х = 36 – У = 36 – 8 = 28.
Проверим:
(8 + 28) / 2 = 36/2 = 18;
28/8 = (24 + 4) / 8 = 24/8 + 4/8 = 3 + 4/8 = 3 (ост. 4).
Объяснение: