Расстояние между городами 90 км, машины встретились через 1 час. Следовательно, за 1 час они путь, равный 90 км, и этот путь - сумма их скоростей. Пусть скорость автомобиля из А равна х Тогда скорость автомобиля из В равна 90-х. Время первого 90:х Время второго 90:(90-х) Следует привести единицы измерения в соответствие ( расстояние дано в км, скорость выражаем в км/ч, время тоже нужно выразить в часах) 27 минут=27/60 часа=9/20 часа По условию задачи время автомобиля из А больше на 9/20 часа Составим уравнение: 90:х -90:(90-х)=9/20 Для удобства сократим обе части уравнения на 9: 10:х-10:(90-х)=1/20 После приведения к общему знаменателю и избавления от дробей получим: 20·10·(90-х)-20·10х=х(90-х) 18000-200х -200х=90х-х² х²-90х-400х+18000=0 х²-490 х+18000=0 Решив квадратное уравнение, получим два корня: х1=450 (не подходит) х2=40 Скорость автомобиля из А равна 40км/ч Скорость автомобиля из В равна 90-40=50 км/ч
Ть опервый использование свойств арифметической прогрессии) Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным
ответ: 114
второй на смекалку) (так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х= (-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х= 0+0+0+....+0+0+112+113+114+..+х =112+113+..+х т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0, и фактически наша сумма равна 112+113+...+х (*) так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы , найдем его очень быстро 112=112 112+113=225 - меньше 112+113+114=339 -- совпало значит искомое число х равно 114 ответ: 114
а) 6c(b-1)
b) 4xy(2+3)
c) 5n(3+2n)