3 - первое число;
10 - второе число.
Объяснение:
Даны два числа. Если утроенное первое сложить со вторым числом, получится 19. Если же утроенное второе сложить с первым числом, получится 33
Найди эти два числа.
х - первое число
у - второе число.
Согласно условию задачи составляем систему уравнений:
3х+у=19
3у+х=33
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=19-3х
3(19-3х)+х=33
57-9х+х=33
-8х=33-57
-8х= -24
х=3 - первое число
у=19-3х
у=19-3*3
у=10 - второе число.
Проверка:
3*3+10=19
10*3+3=33, верно.
1)31 (км/час) скорость лодки в стоячей воде.
2)54,4 (км) до места встречи пройдёт лодка, плывущая по течению.
3)44,8 (км) до места встречи пройдёт лодка, плывущая против течения.
Объяснение:
Расстояние между двумя пристанями равно 99,2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 1,6 ч. лодки встретились. Скорость течения реки равна 3 км/ч.
1)Скорость лодки в стоячей воде?
2)Сколько километров до места встречи пройдёт лодка, плывущая по течению?
3)Сколько километров до места встречи пройдёт лодка, плывущая против течения?
х - скорость лодки в стоячей воде
х+3 - скорость лодки по течению
х-3 - скорость лодки против течения
Формула движения: S=v*t
S - расстояние v - скорость t - время
Согласно условию задачи составляем уравнение:
(х+3)*1,6+(х-3)*1,6=99,2
Разделим уравнение на 1,6 для упрощения:
(х+3)+(х-3)=62
Раскроем скобки:
х+3+х-3=62
2х=62
х=31 (км/час) скорость лодки в стоячей воде.
(31+3)*1,6=54,4 (км) до места встречи пройдёт лодка, плывущая по течению.
(31-3)*1,6=44,8 (км) до места встречи пройдёт лодка, плывущая против течения.
1. (5·a+4·b)²–(5–4·b)²=(5а)^2+2*5а*4b+ (4b)^2-(5^2-2*5*4b+(4b)^2)=25a^2+40ab+16b^2-25+40b-16b^2=25a^2+40ab+40b-25
2. (10·p–3·q)²+(5·p+6)²=100p^2-60pq+9q^2+25p^2+60p+36=125p^2-60pq+60p+9q^2
3. t·(9·t–1)²–81·t·(t–4)²= t(81t^2-18t+1)-81t(t^2-8t+16)=81t^3-18t^2+t-81t^3+648t^2-16*81t=630t^2-1295t
4. 5·m·n–2·(3·m–n)²+9·m²= 5mn-2(9m^2-6mn+n^2)=5mn-18m^2+12mn-2n^2= -18m^2+17mn-2n^2