Объяснение:
1. 1,5 • 62 – 23=93-23=70.
***
2. 1) x^8 • x^2; =x^(8+2)=x^10;
2) x^8 : x^2=x^(8-2)=x^6;
3) (x^8)^2=x^(8*2)=x^16;
4) ((x^4)^5 • x^2)/x^12=x^(4*5)*x^2/x^12=x^(20+2)/x^12=x^(22-12)=x^10.
***
3. 1) –3*a^2*b^4 • 3a^2 • b^5= -9*a^4*b^9;
2) (–4a^2*b^6)^3=(-4)^3*(a^2)^3*(b^6)^3= -64a^6*b^18.
***
4. (5x^2 + 6x – 3) – (2x^2 – 3x – 4) = 5x^2 + 6x – 3 – 2x^2 + 3x + 4 =3x²+9x+1.
***
5. 1) (46 • 29) / 324=1334/324=4 38/324=4 1/162 ;
2) (2 2/3)^5 • (3/8)^6=(8/3)^5*(3/8)^6=(8/3)^5*(8/3)^(-6)=(8/3)^(-1)=3/8.
***
6. 125а^6b^3 • (–0,2a^2b^4)^3= 125*(-0,2)^3*a^6*b^12 = =-125*0,008*a^6*b^12=a^6*b^12.
По правилу произведения.
На первом месте может быть любая из 10 цифр, кроме ноля, значит на первом месте может быть только 9 цифр.
9.
На втором месте, может быть любая из 10 цифр, кроме той, что уже была использована на первом месте, то есть 9 цифр.
9*9.
На третьем месте, может быть любая из 10 цифр, кроме тех двух, которые были уже использованы, то есть 8 цифр.
9*9*8.
На четвертом, соответственно, 7 цифр.
9*9*8*7.
И так далее...
Имеем:
всего шестизначных номеров без повторения цифр, так что на первом месте не может быть нуль будет
9*9*8*7*6*5 = 81*56*30 = 4536*30 = 136080.
ответ. 136080.
2a³+8a²-ab+c
a= - 3
2·(-3)³+8·(-3)²-(-3)b+c =2·(-27)+8·9+3b+c=-27+72+9b+c=3b + c + 18
a=2
2·2³+8·2²-2b+c =2·8+8·4-2b+c=16+32-2b+c=- 2b + c + 48
+_______________