в)число 4 является корнем уравнения x/2-x/4=1
Приведем к общему знаменателю левую часть:
2х-х/4=1
х/4=1
х=4 что и требовалось доказать
г)число -2 является корнем уравнения х-2(5х-1)-10х
Раскроем скобки
х-10х+2-10х=х+2 чтобы найти корень уравнения приравняем его к нулю
х+2=0
х=-2 что и требовалось доказать
Является ли корнем уравнением 2х(в квадрате)-5х-3=0
в)-1/2
г)1/2 ?
Найдем корни уравнения:
D = b^2 - 4ac =25-4*2*(-3)=49
х1,2=-b +/-корень из дискриминанта разделить на 2*а
х1=3
х2=-1/2
в)-1/2 этот ответ является корнем уравнения
г)1/2 этот ответ не является корнем уравнения
Объяснение:
А) 5x^3 - 3x^2 - 3x + 5 = 0
5x^3 + 5 - 3x^2 - 3x = 0
5(x^3 + 1) - 3x(x + 1) = 0
5(x + 1)(x^2 - x + 1) - 3x(x + 1) = 0
(x + 1)(5x^2 - 5x + 5 - 3x) = 0
(x + 1)(5x^2 - 8x + 5) = 0
x + 1 = 0 => x = -1
5x^2 - 8x + 5 = 0
D = 8^2 - 4 * 5 * 5 = 64 - 100 = -36
∅
ответ: x = -1
Б) (x + 1/x)^2 - 5(x + 1/x) + 6 = 0
t = x + 1/x
t^2 - 5t + 6 = 0
D = 5^2 - 4 * 1 * 6 = 25 - 24 = 1
t1 = (5 + 1) / 2 = 6/2 = 3
t2 = (5 - 1) / 2 = 4/2 = 2
x + 1/x = 3
x^2 - 3x + 1 = 0
D = 3^2 - 4 * 1 * 1 = 9 - 4 = 5
x1 = (3 - √5) / 2
x2 = (3 + √5) / 2
x + 1/x = 2
x^2 - 2x + 1 = 0
D = 2^2 - 4 * 1 * 1 = 4 - 4 = 0
x = 2 / 2 = 1
ответ: x1 = (3 - √5) / 2 ; x2 = 1 ; x3 = (3 + √5) / 2.