При решении таких неравенств можно придерживаться следующей схемы.
1. Перенести все члены неравенства в левую часть.
2. Все члены неравенства в левой части привести к общему знаменателю, то есть неравенство записать в виде :
3. Найти значения х, при которых функция y= может менять свой знак. Это корни уравнений
4. Нанести найденные точки на числовую ось. Эти точки разбивают множество действительных чисел на промежутки, в каждом их которых функция будет знакопостоянной.
5. Определить знак в каждом промежутке, вычисляя, например, значение данного отношения в произвольной точке каждого промежутка.
6. Записать ответ, обращая особое внимание на граничные точки промежутков. При решении строгого неравенства >0 (<0) граничные точки в ответ не включаются. При решении нестрогого неравенства ? 0 ( ? 0), если точка является корнем знаменателя, то она не включается в ответ (даже если она одновременно является корнем числителя). Если же точка является корнем одного числителя, то она включается в ответ.
Прощу прощения за задержку. Разложить на множители, это означает упростить данное выражение. В данном выражении, мы можем увидеть общие множители abc . Можно конечно разложить так:
abc(27a²bc⁴-36ab³c²) - но как можно заметить, выражение в скобках можно упростить тоже. Поэтому не имеет смысла несколько раз упрощать и упрощать. Поступаем так: Находим минимальную степень а, b и с. И получаем, что можно упростить так: Можем так же заметить что 27 и 36 делятся на 9. А значит имеем право упростить еще : Это и будет окончательный ответ. Мы разложили на множители, и если перемножить скобки, получим начальное выражение :)
Если что то не понятно, задайте вопрос в комментарии :)
При решении таких неравенств можно придерживаться следующей схемы.
1. Перенести все члены неравенства в левую часть.
2. Все члены неравенства в левой части привести к общему знаменателю, то есть неравенство записать в виде :
3. Найти значения х, при которых функция y= может менять свой знак. Это корни уравнений
4. Нанести найденные точки на числовую ось. Эти точки разбивают множество действительных чисел на промежутки, в каждом их которых функция будет знакопостоянной.
5. Определить знак в каждом промежутке, вычисляя, например, значение данного отношения в произвольной точке каждого промежутка.
6. Записать ответ, обращая особое внимание на граничные точки промежутков. При решении строгого неравенства >0 (<0) граничные точки в ответ не включаются. При решении нестрогого неравенства ? 0 ( ? 0), если точка является корнем знаменателя, то она не включается в ответ (даже если она одновременно является корнем числителя). Если же точка является корнем одного числителя, то она включается в ответ.