Обозначим через аi число очков, выбитых первым стрелком при i-м выстреле, а через bi число очков, выбитых вторым стрелком при i-м выстреле.
Тогда из условий задачи следует:
а1+а2+а3= b1+b2+b3, (1)
а3+а4+а5= 3(b3+b4+b5), (2)
Из приведенных попаданий заключаем, что равенство (2) может выполняться, если b1, b2, b3, минимальные по числу очков попадания, а а3, а4, а5 максимальные и сумма а3+а4+а5 кратна трем. Отсюда видно, что b3, b4, b5, это числа 2, 3 и 4, а а3, а4, а5 это числа 10, 9, 8. Далее видим, что первыми четырьмя выстрелами (каждый стрелок сделал по два) они выбили очки: 9, 8, 5, 4. Используем условие (1). Очевидно, что при этом сумма а1+а2 должна быть наименьшей при ее выборе из четырех чисел (9, 8, 5, 4), а b1+b2 наибольший при выборе ее из тех же чисел. Это возможно при a=5, a2=4, a3=10, b1=9, b2=8, b3=2.
вспомним что такое модуль
|x| = x x>=0
= -x x<0
Пишем на всякий случай ОДЗ x≠3 и смотрим подмодульное выражение
(x²+x-2)/(x-3) = (x+2)(x-1)/(x-3)
D=1+8 = 9
x12=(-1+-3)/2 = -2 1
смотрим метод интервалов
[-2] [1] (3)
Итак при
1. x∈[-2 1) U (3 + ∞)
|(x²+x-2)/(x-3)| = (x²+x-2)/(x-3)
2. x∈(-∞-2) U [1 3)
|(x²+x-2)/(x-3)| = - (x²+x-2)/(x-3)
решаем полученные уравнения
1. x∈[-2 1] U (3 + ∞)
(x²+x-2)/(x-3) = (x²+x-2)/(x-3) решения все числа на интервалах с учетом одз
x∈[-2 1) U (3 + ∞)
2. x∈(-∞-2) U (1 3)
(x²+x-2)/(x-3) = - (x²+x-2)/(x-3)
2(x²+x-2)/(x-3) = 0
x=1 x=-2 решений нет
ответ x∈[-2 1] U (3 + ∞)
Подкоренное выражение корня чётной степени должно быть неотрицательным, то есть ≥ 0 .
x² - 18x + 72 ≥ 0
Разложим левую часть на множители:
x² - 18x + 72 = 0
D = (- 18)² - 4 * 72 = 324 - 288 = 36 = 6²
x² - 18x + 72 ≥ 0
(x - 12)(x - 6) ≥ 0
+ - +
__________[6]___________[12]__________
x ∈ (- ∞ ; 6] ∪ [12 ; + ∞)