x={7/60; 11/60}, x₁+x₂=7/60+11/60=18/60=0,3
Объяснение:
sin5πx-cos5πx=√6/2
(√2/2)(sin5πx-cos5πx)=(√6/2)(√2/2)
sin(π/4)sin5πx-cos(π/4)cos5πx=√3/2
-cos(π/4+5πx)=√3/2
cos(π/4+5πx)=-√3/2
π/4+5πx=±arccos(-√3/2)+2kπ=±(π-arccos(√3/2))+2kπ=±(5π/6)+2kπ, k∈Z
1/4+5x=±5/6+2k
5x=±5/6-1/4+2k
x=±1/6-1/20+0,4k
1) x=1/6-1/20+0,4k=(7+24k)/60
0<(7+24k)/60<0,5
0<7+24k<30
-7/24<k<23/24, k∈Z⇒k=0⇒(7+0)/60=7/60
2) x=-1/6-1/20+0,4k=(-13+24k)/60
0<(-13+24k)/60<0,5
0<-13+24k<30
13/24<k<43/24, k∈Z⇒k=1⇒x=(-13+24)/60=11/60
x₁+x₂=7/60+11/60=18/60=0,3
РЕШЕНИЕ:
степенная функция, графиком которой является кубическая парабола, проходящая из || координатной четверти в |V четверть ( розовая кривая )
линейная функция, графиком которой прямая, проходящая из | коорд. четверти в ||| четверть ( синяя прямая )
это вся ось Ох
--------------------------------------------------
Нарисуем эти линии и найдём абсциссы точек их пересечения, приравняв правые части функций у = - х³ и у = х + 2.
Из первой скобки получаем х = - 1 , а вторая скобка действительных корней не имеет.
Искомая площадь фигуры АВС может быть получена как сумма площадей криволинейной трапеции ВСD и треугольника ACD.
Найдём первообразную функции у = - х³:
F(x) = - x^4 / 4 + C
По формуле Ньютона - Лейбница:
S = F(b) - F(a)
S bcd = F( 0 ) - F( - 1 ) = - 0^4 / 4 - ( - ( - 1 )^4 / 4 ) = 1 / 4 = 0,25
S acd = AD • CD / 2 = 1 • 1 / 2 = 1 / 2 = 0,5
Следовательно, площадь фигуры АВС равна:
S abc = S bcd + S acd = 0,25 + 0,5 = 0,75
ОТВЕТ: 0,75