М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
BlueSubaru666
BlueSubaru666
22.02.2022 11:31 •  Алгебра

Определи интервалы, в которых значения функции отрицательны.

1)x∈
2) (−∞; 0)
3) (1; +∞)
4) (0; +∞)
5) (−∞; 1)
6) (−∞; +∞)
7) ∅

👇
Ответ:
shdbrjhb
shdbrjhb
22.02.2022

Значениями аргумента, при которых значения функции положительны (y>0), являются те значения аргумента x, при которых график функции расположен выше оси x.

Значениями аргумента, при которых значения функции отрицательны (y<0), являются те значения аргумента x, при которых график функции расположен ниже оси x.

1 и 3 вариант

Объяснение:

4,6(9 оценок)
Открыть все ответы
Ответ:
СуПерБро123
СуПерБро123
22.02.2022

1) (a - b)² = a² - 2ab + b²

(2х - 1)² = 16

(2х)² - 2 · 2х · (-1) + (-1)² = 16

4х² + 4х + 1 - 16 = 0

4х² + 4х - 15 = 0      

D = b² - 4ac = 4² - 4 · 4 · (-15) = 16 + 240 = 256

√D = √256 = 16

х₁ = (-4-16)/(2·4) = (-20)/8 = -2,5

х₂ = (-4+16)/(2·4) = 12/8 = 1,5

ответ: (-2,5; 1,5).    

3) (a + b)² = a² + 2ab + b²    

25 - (5х + 1)² = 0

25 - ((5х)² + 2 · 5х · 1 + 1²) = 0

25 - (25х² + 10х + 1) = 0

25 - 25х² - 10х - 1 = 0  (умножим обе части уравнения на (-1))

25х² + 10х + 1 - 25 = 0

25х² + 10х - 24 = 0

D = b² - 4ac = 10² - 4 · 25 · (-24) = 100 + 2400 = 2500

√D = √2500 = 50

х₁ = (-10-50)/(2·25) = (-60)/50 = -1,2

х₂ = (-10+50)/(2·25) = 40/50 = 0,8

ответ: (-1,2; 0,8).

                   

4,7(15 оценок)
Ответ:
kvas1985
kvas1985
22.02.2022

f(x)=\left\{\begin{array}{l}\Big(\dfrac{1}{2}\Big)^{x}\ ,\ \ x\leq -1\ ,\\-x\ ,\ \ -1

Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х= -1, х=1 , х=2 .

a)\ \ \lim\limits _{x \to -1-0}f(x)=\lim\limits _{x \to -1-0}\Big(\dfrac{1}{2}\Big)^{x}=2\ \ ,\ \ \ \lim\limits _{x \to -1+0}f(x)=\lim\limits _{x \to -1+0}(-x)=1\\\\\lim\limits _{x \to -1-0}f(x)\ne \lim\limits _{x \to -1+0}f(x)\ \ \Rightarrow

При х= -1 функция имеет разрыв 1 рода .

b)\ \ \lim\limits _{x \to 1-0}f(x)=\lim\limits _{x \to 1-0}(-x)=-1\ ,\ \ \lim\limits _{x \to 1+0}f(x)=\lim\limits _{x \to 1+0}(x^2-2)=-1\\\\f(1)=(-x)\Big|_{x=1}-1\\\\\lim\limits _{x \to 1-0}f(x)=\lim\limits _{x \to 1+0}f(x)=f(2)=-1\ \ \ \Rightarrow

При х=1 функция непрерывна.

c)\ \ \lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2-0}(x^2-2)=4-2=2\\\\\lim\limits _{x \to 2+0}f(x)=\lim\limits _{x \to 2+0}7^{\frac{2x}{x-2}}=7^{+\infty }=+\infty \ \ \ \Rightarrow

При х=5 функция имеет разрыв 2 рода .

График функции нарисован сплошными линиями.

На 1 рисунке нет чертежа функции   при х>2  , для которого прямая х=2 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>2 сплошной линией..


Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
4,5(88 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ