ΔАВС. Если две биссектрисы пересекаются в точке К, то и третья биссектриса бдет проходить через эту точку, так как биссектрисы треугольника пересекаются в одной точке. ⇒ КС - биссектриса. Чтобы было удобно читать текст, обозначим ∠А=2α, ∠В=2β , ∠С=2ω ⇒ ∠ВАК=∠САК=α , ∠АВК=∠СВК=β , ∠ВСК=∠АСК=ω . ΔАВК: α+β+∠АКВ=α+β+146°=180° ⇒ α+β=180°-146°=34° ΔВКС: α+ω+∠ВКС=180° } ΔАКС: β+ω+∠АКС=180° } Сложим два последних равенства: α+β+2ω+∠ВКС+∠АКС=360° 34°+2ω=360°-(∠ВКС+∠АКС) 2ω=326°-(∠ВКС+∠АКС) ∠АКВ+∠ВКС+∠АКС=360° ⇒ ∠ВКС+∠АКС=360°-∠АКВ=360°-146°=214° 2ω=326°-214°=112° ω=56° ∠ВСК=56°
1)=(по основанию 5) log(4+x)(1+2x)= log 9 4+x>0 x>-4 и 1+2x>0 x>-1/2, т е х>-1/2 4+8x+x+2x²=9 2x²+9x-5=0 x1,2=((-9+-√(81+40))/4= (-9+-11)/4, x1=-5-не удовлетворяет x>-1/2 x2=1/2-ответ 2) 1+x>0 x>-1и 2+x>0 x>-2, т е х>-1 = (по основанию 2)log(1+x)(2+x)=1 x²+x+2x+2=2, x²+3x=0 x1=0, x2=-3-не удовлетворяет x>-1 x=0- ответ 3) x-2>0 x>2 и x+1>0 x>-1, т е x>2 = (по основанию 2)log(x-2)(x+1)=2, x²+x-2x-2=4, x²-x-6=0, x1,2=(1+-√(1+24))/2=(1+-5)/2, x=3- ответ
Y=7(X^2+(12/7)*X+4/7) это уравнение параболы; у неё ветви вверх т.к. 7 у 7X^2 больше нуля; разложим уравнение
Y=7(X(X+12/7))+4 создадим в уравнении квадрат: Y=X^2+12/7*X+36/49-36/49+4
Y=7(X+6/7)^2-36/49+4
Y минимален когда 7(X+6/7)^2 минимален (то есть эта штука равна нулю т.к. число возведённое в квадрат всегда >=0) => X=-6/7;
у параболы ось X=-6/7 является осью симметрии, нужно обьяснить почему или только решение нужно?