Пусть А - событие, которое состоится, если наудачу взятое двузначное число кратно 2, а В - событие, которое состоится, если это число кратно 7. Надо найти Р(А + В).Так как А и В - события совместные, то:
Р(А + В) = Р(А) + Р(В) - Р(АВ).
Двузначные числа - это 10, 11, . . . ,98, 99.
Всех их- 90 элементарных исходов. Очевидно, 45 из них кратны 2 (благоприятствуют наступлению А),
13 кратны 7 (благоприятствуют наступлению В) и ,наконец,7 кратны и 2, и 7 одновременно (благоприятствуют наступлению А×В). Далее по классическому определению вероятности:
Р(А) = 45/90 Р(В) = 13/90 Р(А×В) = 7/90
и, следовательно:
Р(А + В) = 45/90 + 13/90 - 7/90 = 51/90
ответ: 51/90
x^2+y^2=29 умножим на 4
получим 4x^2+4y^2=116 =>
y^2-4x^2=9
+
4x^2+4y^2=116
y^2+4y^2+4x^2-4x^2=9+116
сократим ( 4x^2 - 4x^2 ) => y^2+4y^2=125
5 y^2=125 поделим на пять
y^2= 25
y=+- 5
если y= -5, то (-5)^2 - 4x^2 = 9
25 - 4x^2=9
-4x^2 = 9-25
-4x^2= - 16 умножим на минус один
4x^2=16 делим на четыре
x^2=4
x= +-2
если y= 5, то 5^2 - 4x^2 = 9
25 - 4x^2=9
-4x^2 = 9-25
-4x^2= - 16 умножим на минус один
4x^2=16 делим на четыре
x^2=4
x= +-2
ответ: 1) x=2, y=5
2) x= -2, y=5
3)x= -2, y= -5
4) x=2, x= -2, y= -5