20(x²-6x-9)²=x(x²-4x-9)
(x²-6x-9)²-x(x²-4x-9)=0
(x²-6x)²-2(x²-6x)·9+9²-x³+4x²+9x=0
x⁴-12x³+36x²-18x²+108x+81-x³+4x²+9x=0
x⁴-13x³+22x²+117x+81=0
подставив вместо х=-1 убеждаемся, что 1+13+22-117+81=0 - верно
Значит х=-1 - корень данного уравнения
Делим x⁴-13x³+22x²+117x+81 на (х+1)
получим х³-14х²+36х+81
Итак,
x⁴-13x³+22x²+117x+81=(х+1)·(х³-14х²+36х+81)
корни многочлена
х³-14х²+36х+81
следует искать среди делителей свободного коэффициента 81
Это числа ±1;±3;±9
Подставим х=9 и убеждаемся, что 9³-14·9²+36·9+81=81(9-14+4+1)=81·0=0
х=9 - корень данного уравнения
х³-14х²+36х+81 делим на (х-9)
получим х²-5х-9
Осталось разложить на множители последнее выражение
х²-5х-9=0
D=25+36=61
x=(5-√61)/2 или х=(5+√61)/2
Окончательно
x⁴-13x³+22x²+117x+81=0 ⇒(х+1)·(х³-14х²+36х+81)=0⇒(х+1)(х-9)(х²-5х-9)=0⇒ х₁=-1 или х₂=9 или x₃=(5-√61)/2 или х₄=(5+√61)/2
Объяснение:
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
-4+x=-b
-4*x=-12
x=3
-4+3=-1
b=1