Задача 1. Бросают игральный кубик. Событие А - выпало 2 очка (один исход из шести) Событие В - выпало нечётное количество очков (1,3,5 - 3 исхода из шести) Вероятность Р=Р(А)*Р(В) Р(А)=1/6 Р(В)= 3/6=1/2 Р= 1/6 * 1/2 = 1/12
Задача 2. Первая партия лампочек 4% брак (0,04) и 100%-4%=96% исправные (0,96) Вторая партия лампочек 5% брак (0,05) и 100%-5%=95% исправные (0,95)
а) Событие А - обе лампочки исправные Р(А)= 0,96*0,95=0,912 (или 91,2%) б) Событие В - хотя бы одна из лампочек окажется исправной Событие С - обе лампочки бракованные Р(С)=0,04*0,05=0,002 Р(В)=1-Р(С)=1-0,002=0,998 (или 99,8%)
Задача 3.
Чёрных шаров - 5 шт. Красных шаров - 4 шт. Белых шаров - 3 шт. Всего шаров - 5+4+3=12 шт.
Вероятность вынуть первым чёрный шар равна 5/12 После этого, в урне останется 12-1=11 шт. шаров Теперь вероятность вынуть красный шар равна 4/11 После этого, в урне останется 11-1=10 шт. шаров После этого, вероятность вынуть белый шар равна 3/10 Итак, итоговая вероятность Р=5/12 * 4/11 * 3/10 = 1/22
Строим 2 параболы - см. картинку. Площадь в пределах от 1 до 4 = =∫(x²-4x-3)dx-∫(-x²+6x-5)=∫(2x²-10x+2)dx=2/3x³-5x²+2x F(4)=128/3-80+8=-29 1/3 F(1)=2/3-5+2=-2 1/3 -29 1/3+2 1/3=-27 s=|-27|=27 точки пересечения парабол - приравниваем функции получаем корни х=1 или 4 --------------------------------------------------- картину видим на втором рисунке. Гипербола 1/(3х-5) имеет вертикальную асимптоту х=5/3 как видим пределы интегрирования от х=0 до х=5 захватывают и левую ветвь гиперболы -поэтому интегрируем у от 0 до 5 не обращая внимания на знак, площадь берем по модулю.
4 корня,
-П/4, естественно противоположный П/4
потом по арктангенсу
7п/4
9п/4