2 см и 2 см
Объяснение:
Дан прямоугольник, периметр которого равен 8 см. Тогда сумма двух сторон равна 8:2 = 4 см. Обозначим через x одну сторону прямоугольника. Тогда вторая сторона равна: 4–x. Теперь составим функцию площади прямоугольника: y=x·(4–x)=4·x-x². Дифференцируем функцию
y'=(4·x–x²)'=4–2·x.
Находим критические точки функции:
y'=0 ⇔ 4–2·x=0 ⇔ x=2 – критическая точка.
Проверим знаки производной:
при x<2: y'=4–2·x>0 и при x>2: y'=4–2·x<0.
Значит, x=2 точка максимума. Тогда
yмакс=y(2)=4·2–2²=8–4=4 см²,
а стороны x=2 см и 4–2=2 см.
в первой кассе продали 214 билетов, во второй 178 билетов.
Объяснение:
Обозначим количество билетов, проданных во второй кассе, буквой Х. Тогда количество билетов, проданных в первой кассе, будет равно Х + 36. В сумме они продали 392 билета. Составляем и решаем уравнение:
(Х + 36) + Х = 392;
2 х Х + 36 = 392;
2 х Х = 356;
Х = 178 (билетов).
Количество билетов, проданных в первой кассе будет равно:
178 + 36 = 214 (билетов).
ответ: Обозначим количество билетов, проданных во второй кассе, буквой Х. Тогда количество билетов, проданных в первой кассе, будет равно Х + 36. В сумме они продали 392 билета. Составляем и решаем уравнение:
(Х + 36) + Х = 392;
2 х Х + 36 = 392;
2 х Х = 356;
Х = 178 (билетов).
Количество билетов, проданных в первой кассе будет равно:
178 + 36 = 214 (билетов).