Вычислим общий вес всех гирь. Он равен 30*62+31=1891. Это число разлагается на простые множители следующим образом: 1891=31*61. По условию на третьем месте стоит гиря, вес которой является делителем суммы весов двух предыдущих гирь. т. е. делителем числа 61+1=62. Поскольку 62=2*31, то это могут быть гири весом в 2 или 31 грамм. Допустим, что на третьем месте стоит гиря весом 31 грамм. Но, на последнем месте должна стоять гиря весом x грамм, являющаяся делителем числа 1891-x, т. е. являться простым множителем числа 1891. Поскольку все они уже стоят на предыдущих позициях, то следовательно приходим к противоречию и на третьей позиции может стоять только гиря весом 2 грамма.
ответ: 2.
Сначала применим к выражению cos2x формулу косинуса двойного аргумента(1 её вариант). Затем получим уравнение, сводимое к алгебраическому. Получим:
2cos²x - 1 + 5cos x + 3 = 0
2cos²x + 5cos x + 2 = 0
Введём замену. Пусть cos x = t, причём |t| ≤ 1
Тогда получим обычкновенное квадратное уравнение:
2t² + 5t + 2 = 0
D = 25 - 16 = 9
t1 = (-5 - 3) / 4 = -8/4 = -2 - данный корень не удовлетворяет уравнению, поскольку мы наложили условие, что |t| ≤ 1
t2 = (-5+3) / 4 = -2/4 = -1/2 - подходит
cos x = -1/2
x = (-1)^k * arcsin(-1/2) + πk, k∈Z
x = (-1)^k+1 * π/6 + πk, k∈Z
ответ: (-1)^k+1 * π/6 + πk, k∈Z
8х<60°+2πn. 8х<π/3+2πn
х<7.5°+πn/4. х<π/24+πn/4
7,5° или π/24( одно и то же) ,но т.к не задан область не определена, то ответ x<π/24+πn/4, где n целое число