В решении.
Объяснение:
Решите задачу с составления уравнения. Разность двух чисел равна 25, а разность их квадратов 875. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х - у = 25
х² - у² = 875
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 25 + у
(25 + у)² - у² = 875
625 + 50у + у² - у² = 875
50у = 875 - 625
50у = 250
у = 250/50
у = 5 - второе число.
х = 25 + у
х = 25 + 5
х = 30 - первое число.
Проверка:
30 - 5 = 25, верно.
30² - 5² = 900 - 25 = 875, верно.
рассмотрим четырехугольник авсе
1. отрезок вд равен отрезку ед (по условию),
2. отрезок сд равен отрезку ад (вд - медиана),
следовательно, четырехугольник авсе - параллелограмм ( по свойству диагоналей параллелограмма).
значит, прямые вс и ае параллельны.
рассмотрим углы всд и еад: прямая вс параллельна ае ( по свойству параллелограмма), ас - секущая (пересекает обе прямые), значит угол всд = еад = 40 градусов.
угол вае равен сумме углов вад и еад, значит угол вае = 40 + 56 = 96 градусов.
ответ: угол вае равен 96 градусов.