1. Пускай одна сторона прямоугольника будет х, тогда другая у.
2.Периметр равен сумме всех сторон, так как 2 стороны одинаковые, уравнение будет иметь вид:
2х + 2у = 22.
3. Площадьпрямоугольника равна произведению его сторон, уравнение будет иметь вид:
х * у = 30.
4. Решим систему уравнений. С первого уравнения выразим х:
х = (22 - 2у) : 2;
х = 11 - у.
5. Подставим значение х во второе уравнение:
(11 - у) * у = 30;
11у - у^2 = 30;
-у^2 + 11у - 30 = 0.
Найдем дискриминант:
D = b^2 -4ac = 121 - 120 = 1.
D > 0, уравнение имеет 2 корня:
х1 = (-11 + 1) / (-2) = 5;
х2 = (-11 - 1) / (-2) = 6.
ответ: Одна сторона прямоугольника 5 см, вторая сторона 6 см.
Объяснение:
Решение системы уравнений v=1,75
z=8,5
Объяснение:
Решить систему уравнений алгебраического сложения.
z−2v=5
5z−6v=32
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -5:
-5z+10v= -25
5z−6v=32
Складываем уравнения:
-5z+5z+10v-6v= -25+32
4v=7
v=7/4
v=1,75
Теперь значение v подставляем в любое из двух уравнений системы и вычисляем z:
z−2v=5
z=5+2*1,75
z=8,5
Решение системы уравнений v=1,75
z=8,5
находим производную у"=3е^3x(5x-1)+е^3x*5=е^3x(15x-3+5)=е^3x(15x+2), е^3x(15x+2)=0, откуда 15х+2=0, х=-2/15( точка экстремума). на числовой прямой отмечаем т. -2/15 и подставляем в производную числа больше и меньше этого, слева от этой точки прозводная отрицательна, справа положит-на, значит при х<-2/15 ф-ция убывает, при х>-2/15 возрастает