М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
leyla623
leyla623
03.07.2021 04:57 •  Алгебра

Решить уравнение! x^2+2x-9+9/(x+1)^2=0

👇
Ответ:
ilja2099
ilja2099
03.07.2021

x^2+2x-9+\frac{9}{(x+1)^2}=0;\ (x+1)^2-10+\frac{9}{(x+1)^2}=0;\ (x+1)^2=t0;

t-10+\frac{9}{t}=0;\ t^2-10t+9=0;\ (t-1)(t-9)=0;\ \left [ {{t=1} \atop {t=9}} \right. ;\ \left [ {{(x+1)^2=1} \atop {(x+1)^2=9}} \right. ;\left [ {{x+1=\pm 1} \atop {x+1=\pm 3}} \right. .

ответ: \{-4;\ -2;\ 0;\ 2\}

4,8(63 оценок)
Ответ:
Solncelunatik
Solncelunatik
03.07.2021

x^2+2x/(x+1)^2=0

ОДЗ(Область допустимых значений):x≠-1

x^2+2x=0

x(x+2)=0

x1=0

x2=-2

ответ: x1=0; x2=-2

4,5(73 оценок)
Открыть все ответы
Ответ:
zoriy22
zoriy22
03.07.2021

ответ: (0; -6)

Объяснение:

1)Найдём абсциссы точек  пересечения графика с осью абсцисс:

x⁴+x²-2=0  

пусть х²=у≥0  ⇒ у²+у-2=0

D=1+8=9>0

y₁= (-1+3)/2=1

y₂=(-1-3)/2=-2<0 (не удовл условию  у≥0)

Если у=1, то х²=1  ⇒ х₁=1, х₂=-1 (абсциссы точек  пересечения графика с осью абсцисс)

2)Найдём уравнение касательной  к кривой y=x⁴+x²-2 в точке  с абсциссой x₀₁ = 1.

Запишем уравнения касательной в общем виде:

y = y₀ + y'(x₀)(x - x₀)

По условию задачи x₀₁= 1, тогда y₀ = 1⁴+1²-2=0

Теперь найдем производную:

y' = (x⁴+x²-2)' = 4х³+2x

следовательно:  y'(x₀)=у'(1) = 4·1³+2·1 = 6

Тогда уравнение касательной в точке с абсциссой х₀₁=1:

y=0+6·(x-1)=6х-6    или   y = 6·x-6  (уравнение первой касательной)

3) Найдём уравнение касательной  к кривой y=x⁴+x²-2 в точке  с абсциссой x₀₂ = -1.

По условию задачи x₀₂= - 1, тогда y₀=y₀₂ = 1⁴+1²-2=0

y'  = 4х³+2x

следовательно:  y'(x₀₂)=у'(-1) = 4·(-1)³+2·(-1) =  -6

Тогда уравнение касательной в точке с абсциссой х₀₂=-1:

y=0-6·(x+1)=-6х-6    или   y = -6·x-6  (уравнение второй касательной)

4)Найдём точку пересечения этих касательных:

6х-6= -6х-6

12х=0

х=0 ⇒ у=6·0-6= -6  ⇒ (0; -6) точка пересечения этих касательных

4,5(79 оценок)
Ответ:
angelinagalak
angelinagalak
03.07.2021

а) 14 - (2 + 3х - х²) = х² + 4х - 9

14-2-3x+x²=x²+4x-9

14-2-3x=4x-9

12-3x=4x-9

12-3x-4x+9=0

21-7x=0

21=7x

x=21:7

x=3

6а²-(9а²-5аb)+(3a²-2ab)  

а=-0,15,b=6

Думаю, что будет легче, если мы приведем подобные:

6а²-9а²+5аb+3a²-2ab (перед знаком минус - знаки в скобке меняем на противоположные, а при плюсе оставляем все, как есть)

Теперь выделяем подобные, имеющие одинаковые переменные и их степени(так будет удобней):

6а²-9а²+5аb+3a²-2ab

__ ___     __

И вычисляем:

6а²-9а²+3a²=0, поэтому мы не пишем числа, связанные с переменной а²

5аb-2аb=3аb

3аb

а и b числа:

-3               *0.15*6= -18*0.15=-2.7

ответ: -2.7

Объяснение:

4,6(53 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ