Пусть всё задание будет единица. Время, за которое первая бригада рабочих выполнит всё задание, пусть будет х час. Тогда второй бригаде понадобится х+8 ч Найдем производительность каждой бригады, т.е. сколько работы выполняется за 1 час. За 1 час первая бригада выполняет 1/х задания. Вторая - 1/(х+8) Так как, работая вместе, обе бригады выполняют задание за 3 часа, их совместная производительность -1/3 Составим уравнение: 1/х + 1/(х+8)=1/3 Избавимся от дробей, умножив обе части уравнения на 3х(х+8) 3(х+8)+3х=х²+8х 3х+24+3х=х²+8х х²+2х -24=0 D=b²-4ac=2²-4·1·(-24)=100 х₁= (-(2)+√100 ):2=4 х₂=(-(2)-√100 ):2=-6 ( не подходит) Первой бригаде для выполнения задания необходимо 4 часа.
2 бригада выполняет всю работу за x дней, по 1/x части в день. 1 бригада выполняет работу за (x-3) дней, по 1/(x-3) части в день. Сначала 1 бригада сделала за 1 день 1/(x-3) часть. Затем 1 и 2 бригада за 3 дня сделали вместе 3*(1/x + 1/(x-3)) часть. И вместе они за 3 дня сделали всю работу, то есть 1. 1/(x-3) + 3/x + 3/(x-3) = 1 3/x + 4/(x-3) = 1 3(x-3) + 4x = x(x-3) 3x - 9 + 4x = x^2 - 3x x^2 - 10x + 9 = 0 (x - 1)(x - 9) = 0 Очевидно, x не может быть равно 1. Значит, x = 9 дней нужно 2 бригаде, чтобы сделать всю работу. x - 3 = 6 дней нужно 1 бригаде, чтобы сделать всю работу.
Время, за которое первая бригада рабочих выполнит всё задание, пусть будет х час.
Тогда второй бригаде понадобится х+8 ч
Найдем производительность каждой бригады, т.е. сколько работы выполняется за 1 час.
За 1 час первая бригада выполняет 1/х задания.
Вторая - 1/(х+8)
Так как, работая вместе, обе бригады выполняют задание за 3 часа,
их совместная производительность -1/3
Составим уравнение:
1/х + 1/(х+8)=1/3
Избавимся от дробей, умножив обе части уравнения на 3х(х+8)
3(х+8)+3х=х²+8х
3х+24+3х=х²+8х
х²+2х -24=0
D=b²-4ac=2²-4·1·(-24)=100
х₁= (-(2)+√100 ):2=4
х₂=(-(2)-√100 ):2=-6 ( не подходит)
Первой бригаде для выполнения задания необходимо 4 часа.