М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
cvetok555
cvetok555
27.06.2022 10:55 •  Алгебра

Вычислить площадь фигуры, ограниченной кривымиy=e^x,y=e^-x,x=1

👇
Ответ:
furymalice
furymalice
27.06.2022
Найти площадь фигуры, ограниченной кривыми.

Для решения задачи в первую очередь нужно построить график.

По графику видно, что найти нужно площадь области, лежащей над \bf y = e^{-x} и под \bf y = e^x.

Найдём точку пересечения данных кривых. Для этого нужно решить систему из уравнений их функций.

\begin{cases}y = e^x,\\y = e^{-x};\end{cases}\Longrightarrow\; e^x = e^{-x}\Longrightarrow\; \bf x = 0.

По графику прямая \bf x = 0 будет являться границей фигурой слева, а прямая \bf x = 1 — справа.

Найти площадь фигуры, ограниченной сверху графиком функции \bf y = e^{x}, а снизу функцией \bf y = e^{-x}, а так же прямыми \bf x = 0 и \bf x = 1, значит вычислить следующий определённый интеграл.

\int\limits_0^1{\left(e^x - e^{-x}\right)}dx = \int\limits_0^1{e^xdx - \int\limits_0^1e^{-x}}dx = e^x|_0^1 - \left(-e^{-x}\right)|_0^1 = e - 1 - \left(-\dfrac{1}{e} - (-1)\right) =\\= e - 1 - \left(-\dfrac{1}{e} + 1\right) = e - 1 + \dfrac{1}{e} - 1 = e + \dfrac{1}{e} - 2 \approx 1,086.

ответ: \bf e + \dfrac{1}{e} - 2 \approx 1,086.
Вычислить площадь фигуры, ограниченной кривымиy=e^x,y=e^-x,x=1
4,7(42 оценок)
Открыть все ответы
Ответ:

Объяснение:

Система уравнений:

x/2 +y/2 -2xy=16          |×2

x+y=-2

x+y-4xy=32

-2-4xy=32

-4xy=32+2

-4xy=34                    |2

x=-17/(2y)

-17/(2y) +y=-2

(-17+2y²)/(2y)=-2

-17+2y²=-4y

2y²+4y-17=0; D=16+136=152

y₁=(-4-2√38)4=(-2-√38)/2

y₂=(-4+2√38)4=(√38 -2)/2

x₁+(-2-√38)/2=-2; x₁=(-4+2+√38)/2=(√38 -2)/2

x₂+(√38 -2)/2=-2; x₂=(-4-√38 +2)/2=(-2-√38)/2

ответ: ((√38 -2)/2; (-2-√38)/2); ((-2-√38)/2; (√38 -2)/2).

Система уравнений:

x/2 +y/2 +2xy=4

x-y=4

x/2 +y/2 +2xy=x-y                  |×2

x+y+4xy=2x-2y

4xy=2x-2y-x-y

4xy=x-3y

x-4xy=3y

x(1-4y)=3y

x=(3y)/(1-4y)

(3y)/(1-4y) -y=4

(3y-y+4y²)/(1-4y)=4

2(y+2y²)=4(1-4y)                   |2

2y²+y-2+8y=0

2y²+9y-2=0; D=81+16=97

y₁=(-9-√97)/4

y₂=(-9+√97)/4=(√97 -9)/4

x₁ -(-9-√97)/4=4; x₁=(16-9-√97)/4=(7-√97)/4

x₂ -(√97 -9)/4=4; x₂=(16+√97 -9)/4=(7+√97)/4

ответ: ((7-√97)/4; (-9-√97)/4); ((7+√97)/4; (√97 -9)/4).

4,6(69 оценок)
Ответ:
DEAFKEV
DEAFKEV
27.06.2022
f(x)=3-4x+x^2\\g(x)=3-x^2

Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).

Алгоритм такой:
0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально.
1. Вычисляется площадь фигуры под g(x);
2. Теперь — под f(x);
3. Разность площадей g(x)-f(x) и будет искомой фигурой.

По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.

Поехали.

1)
\int\limits^{2} _0 {(3-x^2+1)} \, dx=(4x-x^3/3)|^{2}_0=8-8/3

2)
 \int\limits^2_0 {(3-4x+x^2+1)} \, dx =(4x-2x^2+x^3/3)|^2_0=8-8+8/3=8/3

3) 8-8/3-8/3=8-16/3=8/3 (кв. ед.)

Вроде бы так... :)
Попробую сейчас проверить решение. 
 
upd: да, всё сошлось.
 
Вычислите площадь фигуры ограниченной линиями y=3-4 x+xквадрат y=3-xквадрат
Вычислите площадь фигуры ограниченной линиями y=3-4 x+xквадрат y=3-xквадрат
4,5(40 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ