М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LINALINA123456
LINALINA123456
20.07.2020 04:11 •  Алгебра

Ввыборах школьного совета участвовало 900 учащихся.за кандидата а проголосовало 15% девочек и 20% мальчиков.сколько девочек и сколько мальчиков участвовало в выборах совета? решить системой

👇
Ответ:
Польбощь
Польбощь
20.07.2020

0.15х+0.2у159

х+у=900

 

х=900-у

0.15*(900-у)+0.2*у=159

 

135+0.05у=159

0.05у=159-135

0.05у=24

у=24:0.05

у=480-мальчиков.

х=900-480=420-девочек.

 

4,5(71 оценок)
Открыть все ответы
Ответ:
Алина483329
Алина483329
20.07.2020

Объяснение:

1) разложим числитель и знаменатель на множители. Из числителя вынесем 8 как общий множитель, в знаменателе воспользуемся формулой сокращённого умножения a^2-b^2 = (a-b)(a+b). Тогда будет 8*(x+4)/((x-4)(x+4)) => 8/(x-4) учитывая что x≠-4

2) 1) 7a/(b-3) и b/((b-3)(b+3)) => 7a*(b+3)/((b-3)(b+3)) и b/((b-3)(b+3))

Под 2) 1/(х-3)^2 и 1/((х-3)(х+3)) => (х+3)/((х-3)^2)*(х+3)) и (х-3)/((х-3)^2)*(х+3))

Номер 3)

1) t^2/(3*(t-2)) + 4/(3*(2-t)) => t^2/(3*(t-2)) — 4/(3*(t-2)) => (t^2-4)/(3*(t-2)) => (t+2)/3 с учётом t≠-2

2) a^2/((a-8)(a+8)) - a/(a+8) => (a^2-a*(a-8))/((a-8)(a+8)) => 8a/((a-8)(a+8))

4,7(54 оценок)
Ответ:
DanIEL982
DanIEL982
20.07.2020

ответ: х = -1

объяснение: напомним основные свойства степени. пусть а > 0, b > 0, n, m - любые действительные числа. тогда

1) an am = an+m

2)  

a

n

a

m

=

a

n

m

3) (an)m = anm  

4) (ab)n = an bn  

5)  

(

a

b

)

n

=

a

n

b

n

6) an > 0  

7) an > 1, если a > 1, n > 0  

8) an < am, если a > 1, n < m  

9) an > am, если 0< a < 1, n < m  

в практике часто используются функции вида y = ax, где a - заданное положительное число, x - переменная. такие функции называют показательными. это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

определение. показательной функцией называется функция вида y = ax, где а — заданное число, a > 0,  

a

1

показательная функция обладает следующими свойствами

1) область определения показательной функции — множество всех действительных чисел.

это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.

2) множество значений показательной функции — множество всех положительных чисел.

чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0,  

a

1

, не имеет корней, если  

b

0

, и имеет корень при любом b > 0.

3) показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 < a < 1.

это следует из свойств степени (8) и (9)

построим графики показательных функций у = ax при a > 0 и при 0 < a < 1.

использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и расположен выше оси oх.

если х < 0 и |х| увеличивается, то график быстро приближается к оси oх (но не пересекает её). таким образом, ось ох является горизонтальной асимптотой графика функции у = ax при a > 0.

если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

график функции у = ax при 0 < a < 1 также проходит через точку (0; 1) и расположен выше оси ох.

если х > 0 и увеличивается, то график быстро приближается к оси ох (не пересекая её). таким образом, ось ох является горизонтальной асимптотой графика.

если х < 0 и |х| увеличивается, то график быстро поднимается вверх.

 

показательные уравнения

рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. решение показательных уравнений часто сводится к решению уравнения ax = ab где а > 0,  

a

1

, х — неизвестное. это уравнение решается с свойства степени: степени с одинаковым основанием а > 0,  

a

1

равны тогда и только тогда, когда равны их показатели.

решить уравнение 23x • 3x = 576  

так как 23x = (23)x = 8x, 576 = 242, то уравнение можно записать в виде 8x • 3x = 242, или в виде 24x = 242, откуда х = 2.

ответ х = 2

решить уравнение 3х + 1 - 2 • 3x - 2 = 25

вынося в левой части за скобки общий множитель 3х - 2, получаем 3х - 2(33 - 2) = 25, 3х - 2 • 25 = 25,

откуда 3х - 2 = 1, x - 2 = 0, x = 2

ответ х = 2

решить уравнение 3х = 7х  

так как  

7

x

0

, то уравнение можно записать в виде  

3

x

7

x

=

1

, откуда  

(

3

7

)

x

=

1

, х = 0

ответ х = 0

решить уравнение 9х - 4 • 3х - 45 = 0  

заменой 3х = t данное уравнение сводится к квадратному уравнению t2 - 4t - 45 = 0. решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3х = 9, 3х = -5.

уравнение 3х = 9 имеет корень х = 2, а уравнение 3х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.

ответ х = 2

решить уравнение 3 • 2х + 1 + 2 • 5x - 2 = 5х + 2х - 2  

запишем уравнение в виде

3 • 2х + 1 - 2x - 2 = 5х - 2 • 5х - 2, откуда

2х - 2 (3 • 23 - 1) = 5х - 2( 5 2 - 2 )

2х - 2 • 23 = 5х - 2• 23

(

2

5

)

x

2

=

1

x - 2 = 0

ответ х = 2

решить уравнение 3|х - 1| = 3|х + 3|  

так как 3 > 0,  

3

1

, то исходное уравнение равносильно уравнению |x-1| = |x+3|

возводя это уравнение в квадрат, получаем его следствие (х - 1)2 = (х + 3)2, откуда

х2 - 2х + 1 = х2 + 6х + 9, 8x = -8, х = -1

проверка показывает, что х = -1 — корень исходного уравнения.

4,8(76 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ