В решении.
Объяснение:
Известно, что для того, чтобы дробь имела смысл, знаменатель её должен быть больше нуля. Поэтому искать значения х следует через неравенство:
х² - 12х + 20 > 0
Приравнять к нулю и решить как квадратное уравнение:
D=b²-4ac =144 - 80 = 64 √D= 8
х₁=(-b-√D)/2a
х₁=(12-8)/2
х₁=4/2
х₁=2;
х₂=(-b+√D)/2a
х₂=(12+8)/2
х₂=20/2
х₂=10.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х= 10, отмечаем эти точки схематично, смотрим на график.
На графике ясно видно, что х может принимать любые значения, кроме х=2 и х=10, знаменатель при таких значениях х равен нулю, что недопустимо.
Решение уравнения: х∈R (все значения х); х≠2; х≠10 (кроме 2 и 10).
Любое выражение, умноженное на 0, равна 0.
При делении любого выражения на 0 получается неопределенное выражение
Объяснение:
Запишем деление единицы на ноль:
a = 1/0
Отсюда:
a • 0 = 1
Нужно найти такое a, которое при умножении на ноль дает единицу. Таких чисел просто нет. Так как произведение равно нулю, когда один из множителей равен нулю, получаем:
0 = 1
Но ноль не равен единице, поэтому запись 0 = 1 неверна, а запись a = 1/0 не имеет смысла (решений) при любом a. А если разделить ноль на ноль? Запишем:
a = 0/0
a • 0 = 0
Уравнение имеет смысл при любых значениях a, так как умножая 0 на a получаем:
0 = 0
2(x^2-4)+4(x-2)(2x+5)=2x^2-8+8x^2+20x-16x-40=10x^2+4x-32