a > b и b < a
Объяснение:
Решение на фото, на всякий случай продублирую, если будет не видно.
Неверные неравенства:
a > b и b < a
Представим, что точка А это -2 (можно брать и -1, результат будет таким же). Точка b - это +1
Исходя из этого решаем:
1)b> a
1 > -2 - верно, т.к положительное число больше отрицательного;
2) a + 10 < b + 10
-2 + 10 < 1 + 10
8 < 11 - верно;
3) a < 0
-2 < 0 - верно, т.к отрицательное число меньше нуля;
4) a > b
-2 > 1 - неверно, т.к положительное число больше отрицательного
-2 < 1 - верно
5) b < a
1 < -2 - неверно, т.к положительное число больше отрицательного
1 > -2 - верно
См. рисунок
1. Правильный шестиугольник, состоит из шести равносторонних треугольников.
Найдем сторону шестиугольника AB=r=48/6=8м.
Рассмотрим ΔСDO в нем CD=DO=0,5a (где а - сторона квадрата) ⇒ a=2CD
По теореме Пифагора найдем СD
r²=CD²+DO²=2CD² ⇒ r=CD√2⇒ м
м
2. Из задачи №1. мы убедились, что радиус описанной окружности равен стороне правильного шестиугольника.
Площадь правильного шестиугольника равна
⇒
см
Длина окружности равна L=2πr=2π4√3=π*8√3≈43,5 см
3. Площадь сектора равна
≈151 см²
(где n - градусная мера дуги сектора)