опишу в общем виде: составляешь таблицу со строками «туда» и «обратно». Там расстояние (S) будет одинаковое, скорость (v) «туда» обозначим за х, а скорость «обратно» за х+2. Время «t» выражаем через формулы скорости v=S/t, НО! Во времени «обратно» ещё добавляем два отдельно от дроби. Дальше составляем уравнение и домножаем каждую дробь и двойку на х(х+2), то есть приводим к общему знаменателю-единице. Раскрываем скобки, сокращаем, получившее квадратное уравнение -2х^2-4х+448=0 делим на -2 и получаем х^2+2х-224=0. Через дискриминант (равный 900) решаем уравнение, получаем корни 14 и -16. -16 не подходит, потому что скорость не может быть отрицательной. Прибавляем к 14 два (по условию) и получаем 16. Вторую хз как решать
не уверен шо правельно но
обоих случаях у нас квадратная функция, значит, это графики парабол. Для их построения необходимо минимум 3 точки, одна из которых - это вершина параболы.
Вершина параболы имеет какие-то координаты (х;y).
Вершину можно найти по формуле х = - b/2a
Для случая а) а =1, b = -2, c = -8. Получаем координату х = 1. Подставляем щначение х в искомое выражение и получаем координаты вершины параболы (1; -9)
Для случая б) а = -1, b = 5, c = 0. Получаем координату х = 2.5. Подставляем щначение х в искомое выражение и получаем координаты вершины параболы (2.5; 5)
Теперь берём произвольное значение x и подставляем в функцию, таким образом получаем искомые графики.
На остальные вопросы легко ответить, смотря на график.